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1 Introduction to Prerequisite 
A prerequisite means a course that a student must complete as a sensible or arbitrary re-

quirement for another course. [Merriam-Webster's unabridged dictionary] 

Its purpose 

Many students met with logic circuits and binary numbers in high school or studied the 

topic by ourselves, but for others, it is a new concept. When I had started lectures from the 

basics, knowledgeable students wrote me in the ratings of subjects that they were bored in the 

early lectures. As my response to their comments, I had next year focused on the interesting 

questions faster, but less familiar listeners expressed complaints, in turn, that they did not un-

derstand the opening passages. To satisfy all, I wrote the prerequisite for unifying knowledge. 

I have included only simple concepts in it. Things that are more difficult remained in lectures. 

How to study it  

Read the entire text. If you understand to some part, do not skip it, but read it very brief-

ly, maybe, you can find out some new evidence in it. However, slow your reading down if 

you encounter less familiar concepts, or you will not be too sure in some details and carefully 

study text including methods used in practical examples. 

Overview of Chapters 

Chapter 2 

The chapter supposes familiarity with conversions of small numbers (from 0 to 15) to 

unsigned binary integers. If you have not learned it yet, first read the beginning of chapter 3. 

Chapter 2 contains a minimal knowledge of logic functions. It starts by a college 

style☺, i.e. by a mathematical definition that is necessary for following logical descriptions, 

but you need not be afraid, the next parts deal only with simple concepts. 

We will enroll ways of specifying logic functions by a truth table. Instead of slave 

entering of all possible combinations, more concise methods can often be used. One of them, 

it is drawing Karnaugh map (KM) of a logic function, which is the most common procedure 

in practice for expressing of smaller logic functions. The description of KM remains at 

"cookbook level". Its theoretical background will be presented in lectures. 

Finally, we will discuss logic functions NOT, AND, OR, and XOR. You probably know 

them from the programming languages C, C #, or Java as bit operators ~, &, |, and ^, and 

NOT, AND, or OR functions also as logical operators: !, &&, and ||.  

In the conclusion of the chapter, we will show the simple way for conversions between 

logical diagrams (schemas) and logical expressions. 

Chapter 3 

You could "theoretically" know its content from programming courses. We will present 

the coding of binary integers as unsigned and signed numbers, and we will explain their over-

flows during additions or subtractions. Furthermore, we will describe the logical and arithme-

tic shifts left and right that are very critical operations in logic circuits. In languages C, C # 

and Java, they are partially included as shift operators << and >>. 

Finally, we will briefly discuss the hexadecimal notation, necessary BCD coding, and 

ASCII characters. 



5 

 

2 Logic functions 
Consider logical variables that take values only from a finite set B. 

Completely Specified Logic Function of n variables y =f(x1,x2,x3,..xn) is the mapping: 

Bn→B, where (x1,x2,x3,..xn) ∈ Bn , xi ∈ B, y ∈ B. 

 If B set contains only 2 elements, i.e., it has cardinality |B|=2, then we have two-value 

logic
1
.  Set B can be written in that case as B={´0´,´1´}, where ´0´ and ´1´ denote the 

logical zero (false) and the logical one (true).  

 Bn denotes Cartesian product, i.e., the set of all possible n-tuples formed from B, and if 

|B|=2 then |Bn|=2n. 

 By mapping B
n
→B, we specify output values firmly assigned to elements from B

n
. For n 

logical input variables, we can define  22n
 different logic functions: 

 for n=1, there are 221
 =2

2 
=4 different logic functions, 

 for n=2, there are  222
 =2

4 
=16 different logic functions, 

 for n=3, there are  223
 =2

8
 =256 different logic functions. 

Example: Let B={´0´,´1´}. Logic function of 2 inputs can be written as y=f(x1, x2). Its Carte-

sian product B
2
 contains four 2-tuples, i.e. B

2
 = { (´0´, ´0´), (´0´, ´1´), (´1´, ´0´), (´1´, ´1´) }. 

 We select one mapping from 16 possible that exist. If the inputs are different, we as-

sign logical ´1´ to output, otherwise logical '0'. This logic function is known as XOR or 

non-equivalence. The following mapping defines our function y=xor(x1, x2): 

xor: B
2
→B = (´0´, ´0´) → ´0´ simplified notation 0 0 → 0 

 (´0´, ´1´) → ´1´  0 1 → 1 

 (´1´, ´0´) → ´1´  1 0 → 1 

 (´1´, ´1´) → ´0´   1 1 → 0 

2.1 Description of logic functions by truth tables 

A mapping assigns just one value of B for each combination of input variables. The table is 

only another way how to write a mapping. XOR function, from the previous example, can be 

specified as the table that can have many formats, for example: 

x1 x2 xor alternatively: x1 x2 xor or: x1 x2 xor 

0 0 0 1 1 0 0 0 0 

0 1 1 1 0 1 1 1 0 

1 0 1 0 1 1 1 0 1 

1 1 0 0 0 0 0 1 1 

All three tables define the identical logic function. The order of rows in a truth table does not 

matter. We can write rows in any order if we satisfy the condition that we listed all of them. 

The definition of logical functions only requires that we must assign just one output value 

from B to each possible combination of input variables. 

                                                 
1
  For designing logic circuits, two-value logic with '0' and '1' logic is not sufficient. Even in this text, we 

will soon introduce 3-value logic by adding value X (don´t care) because we will need it. For professional work, 

9-value logic MVL-9 is frequently used. You will learn about it in specialized educational subjects. 
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A list of all the possible combinations is lengthy, so we often join several logic functions into 

one table. For example, we can write xor along with other common logic functions:: 

x1 x2 xor and or nand nor 

0 0 0 0 0 1 1 

0 1 1 0 1 1 0 

1 0 1 0 1 1 0 

1 1 0 1 1 0 0 

Sometimes it is useful to reduce the number of rows. For example, the selection from more 

concurrent requests can be solved by priority logic functions. Their output p can specify the 

number of the highest order input xi that is in logical '1'. 

For 3 inputs, a priority function can have right table:  

 Output p3 =  00, only if all inputs are ´0´.  

 Output p3 = 01, if only input x1=´1´.  

 If x3=´0´ and x2=´1´ then p3=10 regardless of x1 input value, 

because we assigned have higher priority to x2 than to x1.  

 Output p3=11, if the most priority input x3=´1´ regardless of 

values of remaining inputs. 

 

x3 x2 x1 p3 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

We can shorten the previous table by merging inputs. If the same output value is assigned to 

more rows for all possible values of some input or a group of inputs, we can replace that input 

or those inputs by "wildcard(s)", e.g. by '-' (hyphen).  

x3 x2 x1 p  x3 x2 x1 p3 

0 0 0 0 0 → 0 0 0 0 0 

0 0 1 0 1 → 0 0 1 0 1 

0 1 0 1 0 
merging 2 rows → 0 1 - 1 0 

0 1 1 1 0 

1 0 0 1 1 

merging 4 rows → 1 - - 1 1 
1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

The new table (top right) contains only 4 rows. Wildcards have reduced rows by merged in-

puts, i.e., we have replaced rows by some prescriptions how to generate them. Now we write 

easily even greater priority function for 10 inputs.  

x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 p10 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 0 0 0 1 - 0 0 1 0 

0 0 0 0 0 0 0 1 - - 0 0 1 1 

0 0 0 0 0 0 1 - - - 0 1 0 0 

0 0 0 0 0 1 - - - - 0 1 0 1 

0 0 0 0 1 - - - - - 0 1 1 0 

0 0 0 1 - - - - - - 0 1 1 1 

0 0 1 - - - - - - - 1 0 0 0 

0 1 - - - - - - - - 1 0 0 1 

1 - - - - - - - - - 1 0 1 0 

We write only 11 rows instead of 2
10

 =1024 rows needed for p10 full table: The last row of 

the table contains 9 wildcards, 1---------. In fact, it represents the prescription, which 

generates 2
9
 =512 rows, because each wildcard takes two values as '0' and '1'. All created 

rows have the same output p10 = 1010. 
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Another example:  The table below left is, in fact, shorter specification of the table right: 

c b a y  c b a y 

- 0 - 1 → 

0 0 0 1 

0 0 1 1 

1 0 0 1 

1 0 1 1 

- 1 0 0 → 
0 1 0 0 

1 1 0 0 

0 1 1 1 → 0 1 1 1 

1 1 1 0 → 1 1 1 0 

Certain functions are difficult to define without wildcards, as the previous priority function of 

p10 for 10 inputs. When we write truth tables by hand, however, the excessive usage of wild-

cards reduces clarity, as it is evident from the table above left. At first glance, we do not know 

whether we have specified all possible combinations of inputs. 

The wildcards are widely applied in computer processing of truth tables, e.g. during the 

processes of minimization of logical functions. 

2.2 Value X - don´t care 
If we want to write the truth table for the decoder that converts decimal digits to a 7-segment 

display, then we can easily create the table for input values 0-9 (binary unsigned from 0000 to 

1001, see Chapter 3.1, page 23).  

However, what do we assign to inputs 10-15 (from 1010 to 1111)? There are not 

required in the entry. We can select something for them, but at the time of the table creation, 

we do not know if our randomly assigned output values do not impede subsequent operations, 

such as further minimizing of our logic function.  

A wiser solution is to postpone our decision. As a sign of the delayed decision, we use 

"don´t care" mark, which specifies that the output value does not matter to us. This mark is 

often written as X.  

With the aid of X a wildcards ´-´, we easily write table for the conversion of decimal 

digits to the 7-segment display. We suppose that segments are lighting on logical ´1´ input. 

 

Figure 1 - 7segment display 

 

Digit 
bits of digits Segment 

x3 x2 x1 x0 a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 0 0 0 1 0 1 1 0 0 0 0 

2 0 0 1 0 1 1 0 1 1 0 1 

3 0 0 1 1 1 1 1 1 0 0 1 

4 0 1 0 0 0 1 1 0 0 1 1 

5 0 1 0 1 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 0 1 1 1 1 1 1 0 0 0 0 

8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 0 0 1 1 

10-11 1 0 1 - X X X X X X X 

12-15 1 1 - - X X X X X X X 

The table of 7-segment display, right in Figure 1, is nearly professional except dividing inputs 

and outputs to columns. In more concise notations, logical values are often combined in se-

quences, or vectors respectively, which significantly reduce the table. 
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For example, instead of 

x3 x2 x1 x0 

0 0 0 0 

we write only 0000 and we add the order of the variables in the sequences into the header of 

the table. Table in Figure 1 can be reduced to a more concise version below right: 

Digit 
bits of digits Segment 

x3 x2 x1 x0 a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 0 0 0 1 0 1 1 0 0 0 0 

2 0 0 1 0 1 1 0 1 1 0 1 

3 0 0 1 1 1 1 1 1 0 0 1 

4 0 1 0 0 0 1 1 0 0 1 1 

5 0 1 0 1 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 0 1 1 1 1 1 1 0 0 0 0 

8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 0 0 1 1 

10-11 1 0 1 - X X X X X X X 

12-15 1 1 - - X X X X X X X 
 

 

Digits 
binary 

x:3210 
Segment 

abcdefg 

0 0000 1111110 

1 0001 0110000 

2 0010 1101101 

3 0011 1111001 

4 0100 0110011 

5 0101 1011011 

6 0110 1011111 

7 0111 1110000 

8 1000 1111111 

9 1001 1110011 

10-11 101- XXXXXXX 

12-15 11-- XXXXXXX 
 

The sequences (vectors) of logical '0' and '1' also have practical significance. They can faster 

specify logic functions in professional development tools for designing circuits. Logical val-

ues are processed here often in the form of vectors to shorten programming statements. In 

contrast, there are almost not used longer definitions of logic functions by filling tables divid-

ed into individual columns. 

More about "don't-care" 

 "don't-care" specifies only a designer's note that an output value will be assigned latter, 

i.e., during the next steps depending on what latter appears more useful. It is, therefore, a 

sign of a delayed decision (something like to-do a comment, or ToDo respectively). 

 "don't-care" can be used only for outputs. In designs, we cannot, in any case, defer a deci-

sion of input values. We must know them in advance. 

 "don't care" has no meaning of "an unknown output". It corresponds more to "not as-

signed yet", "unspecified yet", or "anything can be here, we do not care about value". 

 "don't-care" cannot be physically realized in the circuits, and eventually, all "don't-care" 

must be replaced by exact logical values, e.g., by logical ´0´ or logical ´1´.
2
 

Unfortunately in many publications, wildcards for merged inputs and "don't care" symbols for 

outputs are often denoted by the same symbols, frequently as characters 'X' or '-'. Then, we 

must distinguish their exact meanings according to their position in truth tables, whether sym-

bols are placed in an input part or an output part. 

                                                 
2
 In pursuit of a maximum precision here, we avoid the claim that X (don´t care) is always and every-

where replaced by either logic '0' or '1'. Usually it happens but there are other options. For example, the output 

may go into high impedance state, i.e., to be disconnected, which is widely used in computer buses, as you will 

see later in lectures. 
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 Input of a logic function: If we see a group "0 - -" or "0 X X" (according to used 

notation), then it generates 4 rows of inputs 000, 001, 010 a 011 with the same output 

value. Character ´X´, or  ´- respectively´, has here meaning of wildcard, i.e., it is the 

prescription for generating of input values.  

 Output of a logic function: For example, a group "1X" or "1-" means that a decision 

about output value has been delayed. Here, the symbol always specifies "don´t care". 

We cannot use any generation by wildcards for outputs - each output must have only 

one fixed value in the table that will be finally used for physical realization of a logic 

function. We can only temporarily postpone our decision about assigned value. 

 

2.3 Truth table defined by sets of values  
Table 1 below describes 8 logic functions whose outputs F0 to F7 become '1' only for one 

logical combination of input values, the functions reports its presence. Together, the functions 

make up one-hot decoder that is a crucial element which forms the basis of many other logical 

constructions. 

N C B A F0 F1 F2 F3 F4 F5 F6 F7 

0 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 1 0 1 0 0 0 0 0 0 

2 0 1 0 0 0 1 0 0 0 0 0 

3 0 1 1 0 0 0 1 0 0 0 0 

4 1 0 0 0 0 0 0 1 0 0 0 

5 1 0 1 0 0 0 0 0 1 0 0 

6 1 1 0 0 0 0 0 0 0 1 0 

7 1 1 1 0 0 0 0 0 0 0 1 

Table 1- Decoder "One-hot" - 1 from 8 

Neither of the previous methods is suitable for the elegant brief description of this decoder. 

However, we may specify its logic function by sets of input values with outputs equaled to 

logical '1', because the count of logical '1's is here less than '0's. This set is called Onset. We 

encode inputs as unsigned binaries (see Chapter 3.1 page 23).  

Table 1 is now reduced to one line, to the following lists of onsets. 

F0on = { 0 },   F1on = { 1 }, F2on = { 2 }, F3on = { 3 }, F4on = { 4 }, F5on = { 5 }, F6on = { 6 }, F7on = { 7 } 

Outputs of functions F0 to F7 are equal to logical ´0´ for all unspecified inputs. 



10 

 

Table 2 describes another analogous decoder, which is called the one-cold decoder because 

the outputs of F0 to F7 functions are in '0' for exactly one input combination.  

N C B A F0 F1 F2 F3 F4 F5 F6 F7 

0 0 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 0 1 1 1 1 1 1 

2 0 1 0 1 1 0 1 1 1 1 1 

3 0 1 1 1 1 1 0 1 1 1 1 

4 1 0 0 1 1 1 1 0 1 1 1 

5 1 0 1 1 1 1 1 1 0 1 1 

6 1 1 0 1 1 1 1 1 1 0 1 

7 1 1 1 1 1 1 1 1 1 1 0 
Table 2- Decoder "One-cold" - 1 from 8 

Here, the definition by onsets is not advantages. We use now offsets
3
  that are the sets of input 

values, in which outputs of a logic function are equal to logical '0'. 

One-cold decoder is easily defined by offsets: 

F0off = { 0 },   F1off = { 1 }, F2off = { 2 }, F3off = { 3 }, F4off = { 4 }, F5off = { 5 }, F6off = { 6 }, F7off = { 7 } 

Here, the unspecified values are again in the second set, i.e. they are equal to logical '1'. 

If we add don´t care set, we can use onsets and offsets also for logic functions that con-

tain don´t care marks. 

N C B A X Y 

0 0 0 0 0 0 

1 0 0 1 0 0 

2 0 1 0 X 0 

3 0 1 1 X 0 

4 1 0 0 1 0 

5 1 0 1 1 X 

6 1 1 0 1 1 

7 1 1 1 1 1 

We can write logic functions X(C,B,A) a Y(C,B,A), specified by the table above, as: 

X: Xoff = { 0,1 }, Xdc = { 2, 3 } ; Y: Yon = { 6,7 },  Ydc = { 5 } , 

For each function, we chose a method that gave us the least work. We write function X by 

offset and don´t care set, because X outputs contain less ´0´ than ´1´, and we select for Y 

function onset a don´t care set.  

Note: Mathematical notation for onset, offset and don´t care set can differ according to 

customs of an author. Symbols F
on

 , F
off

 a F
dc

 used here are not a general rule. We can encoun-

ter other notations. For example, onset is frequently written by lowercase m (from minterm) 

and offset as uppercase M (from Maxterm). Thus, the previous functions X and Y could be 

specified in other texts as:  

X: M(0,1), dc( 2, 3);  Y: m(6,7), dc(5)  

The names "minterm" and "Maxterm" follow from the minimization of logic functions whose 

explanation is beyond the scope of this publication. You will learn about it in lectures. 

                                                 
3
 Name 'offset' is quite misleading, since this term more frequently indicates a displacement, shift or 

steady-state error in mathematics and science papers, but 'offset' is really used in logic circuits.  
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2.4 Karnaugh map 
In technical practice, logic functions with a smaller number of inputs are usually specified by 

Karnaugh map (KM). We present its detailed derivation with the aid of the truth table of logic 

function Y =f(d,c,b,a) with four inputs (d,c,b,a) and one output Y. We use constant y00 to y15 

(equaled to some logical values '0', '1' or X) for its outputs to transparently show their order. 

  
Figure 2 - Truth table in matrix form 

The truth table left has 16 rows, but the inputs c and d have the same value for groups of 4 

rows. Such table can be advantageously abbreviated by rewriting in a matrix form 4x4, shown 

at right, where each output has input values specified by its column and row. 

We modify table right in Figure 2. We swap the last two columns, and then the last two 

rows. We have obtained the middle table in Figure 3 — that is already Karnaugh map of logic 

function Y. Logical ´1´ of inputs are placed side by side in it, so instead of writing 0 and 1 we 

can draw lines symbolizing value of '1', see the table at right in Figure 3.  

 
Figure 3 - Genesis of Karnaugh map 4x4 

The most important property of Karnaugh maps, the necessary condition for any Karnaugh 

map, is the following. One input variable is only changed if we performed any movement in it 

by one cell vertically or horizontally.  

For example, y00 output is assigned to inputs dcba=0000 and its neighbor y04, in the row 

below, to dcba = 0100. The movement from y00 to y04 changed only input c from ´0´ to ´1´.  

The rule also applies to the edge map, for example, when moving from the first to the 

fourth row in the same column. If we take the last column for the show - output y02 has inputs 

dcba=0010  the output y10 has inputs dcba = 1010. Input d has only changed from ´0´ to ´1´.  

Another example, output y14 at the end of the 3
rd

  row has inputs dcba=1110, and  y12 in 

the beginning of the same row has inputs dcba = 1100. Input b changed only from ´1´ to ´0´.  



12 

 

The ordering of values by such way that two successive values differ only in one bit is 

called Gray code, rarely known also as reflected binary code. The code is a vital concept, used 

not only in minimizing logic functions but also in sensors for position and transfers infor-

mation, such as error correction in digital television.  

Indexes i (of yi outputs in Karnaugh maps) are not successive. If we compare numbers 

of indexes on two columns in any row, that the 2
nd

 column has its indexes greater by +1 that 

the 1
st
 column, the third column by +3 and the 4

th
 column by +2 than the 1

st
 column.  

Property follows from the input variables. Each input bit has weight given by power two 

series, 2
n
. If you arrange inputs as dcba, then input a has a weight of 1 = 2

0
, b input has weight 

2 = 2
1
, c input has weight 4 = 2

2
 and d input has weight 8 = 2

3
. The sum (row+column) gives 

an input index value that corresponds to an output written inside Karnaugh map. 

The 2
nd

 column has its indexes +1 higher than the 1
st
 column because 2

nd
 column has 

a='1' and a represent weight 1. The 3
rd

 column has two input variables in '1', a and b, thus it 

has indexes +3=(+b+a) higher than the 1
st
 column. Analogously, the last column has only in-

put b='1', so, its weight=2, thus, the 4
th

 column indexes are +2 higher. 

 
Figure 4 - Dependences in Karnaugh map 4x4 

From the above properties, we can derive the differences between the indexes in a single col-

umn. The 2
nd

 row has an index value always by +4 greater than the corresponding output of 

the same column of the 1
st
 row (a + c = 4). The 3

rd
 row has higher indexes by +12 (+ d + c) 

from the 1
st
  row and the 4

th
 row by +8 (+ d). If we have correctly allocated indexes to the 1

st
 

row, then the rest can be mechanically derived. 

Karnaugh map, abbreviated KM, which Figure 4 depicts left, of course, is not the only 

way to draw it or how to organize the input variables. KM styles depend on customs of au-

thors. Several different KM drawings, of many possible, are shown in Figure 5.  

 
Figure 5 - Some styles for drawing Karnaugh map 4x4 

If variables are organized in different orders, they have certainly different weights, and then, 

we also obtain a different order of indexes. However, any KM must always meet the previous-

ly mentioned property of Gray code. One input variable (a bit) only changes by any move-

ment, either in a column or a row, including crossing over the edges of a map. 
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Example: Draw the Karnaugh map (KM) of segment e of 7-segment display. 

Solution: Figure 1 on page 7 depicts truth table of 7-segment display. We pick from it the 

values for segment e. 

Given that we have not much experience with drawing KM we proceed through 

an intermediate step to prevent mistakes☺.  

First, we draw an auxiliary KM, in which we enter indexes of our ordering of in-

put variables. According to them, we fill the values of the truth table of segment e. 

 

2.4.1 Karnaugh maps for different sizes 

Karnaugh maps are not suitable for processing in computers. They used exclusively for hand 

minimizing or writing logic functions with a small number of inputs. Although KMs can be 

theoretically built for any logical function of any size, their clarity decreases exponentially 

with increase in the number of variables. It also demonstrates Figure 6, where are depicted 

some selected possibilities how to draw Karnaugh maps for other sizes than 4x4, including the 

final ordering of input indexes. 

 
Figure 6 - Karnaugh maps for other sizes than 4x4 

Fortunately, it is possible to reduce the number of variables in logic functions by various 

handy decompositions and expansions, which will be the topics of lectures, so you can always 

manage with maps to 4x4 for your manual designs☺. 
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2.5 Overview of the main logic functions 
Figure 7 shows all the logical functions of one variable input, including their schematic 

symbols. Two of these are constant because their output remains constant regardless of the 

value of the input - F0 has output permanently logical '0' and F3 logical '1'.  

 
Figure 7 - Logic function of 1-input variable 

F1 function has its output value equals the input. If it is a direct connection, then F1 is called 

WIRE. When F1 is realized by an electronic element, either for an electrical isolation or to 

obtain higher output current or different signal level, in this case, F1 is called BUFFER to 

emphasize this fact. 

F2 logic function changes the input logical '0' to '1' and '1' to '0'. It is called inverter or 

negation, sometimes also complement and denoted as INV or NOT. 

Figure 8 shows all logical functions of two input variables, again including their 

schematic symbols. When you look at it, you notice, it is present 16 functions, but 6 of them, 

marked in blue, can be replaced by proper logical functions of one variable. 

The first two of these are functions F0 and F15 are not dependent on inputs. We know 

them as constants from Figure 7. Other 4 functions BUFX, BUFFS, INVX, and INVY have 

their output values dependent only on one input. If we connect their input that affects output 

to logic function BUFFER, or inverter (INV) respectively, we can replace them. 

 
Figure 8 - Logic functions of 2 input variables 

Of the remaining 10 logic functions, only 6 of them are practically used: AND, XOR, OR, 

NOR, EQU, NAND. They are in yellow highlighting. Figure 9 depicts their Karnaugh maps. 

As we can see from it, these selected logical function of two variables are easy to remember 

for its symmetry - their output is not dependent on order of inputs, by the other words, their 
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outputs do not change, if we swap x and y. Additionally, three logical functions in the bottom 

row of Figure 9 (NAND, EQU, and NOR) are just negated logical functions of the first row, 

so in fact, we just need to be familiar only with three logical functions of two variables, name-

ly AND, XOR, and OR.  

 
Figure 9 - Karnaugh maps of main logic functions of two variables 

For the following text, we define the ordering of logical values as '0' <'1', by the words, logi-

cal '0' is less than logical '1'. 

 Logic function AND gives as its output logical ´1´ only when the both its inputs are at 

logic ´1´. Therefore, it can be considered as the selection of a minim value of its in-

puts. If any input is in logical ´0´, then the minimum is ´0´.  

 Logic function OR is in some ways mirrored AND function. Logic function OR gives 

as its output logical ´0´ only when the both its inputs are at logic ´0´. Therefore, it can 

be considered as the selection of a maximum value of its inputs. If any input is in log-

ical ´1´, then the maximum is ´1´.  

The used analogy of minimum and maximum selection allows us expand the logical AND and 

OR functions to functions with an arbitrary number of inputs.  

 Logic function AND with n inputs, Z=and(xn-1,...,x1, x0), selects minimum from all its 

inputs - Z is in logical ´1´ only when all its inputs xi = ´1´.  If one or more inputs are 

´0´, then minimum Z= ´0´. 

 Logic function OR with n inputs, Z=and(xn-1,...,x1, x0), selects maximum from all its 

inputs - Z is in logical ´0´ only when all its inputs xi = ´0´.  If one or more inputs are 

´1´, then maximum Z= ´1´. 

Logic XOR and EQU functions perform the comparison of their inputs: 

 Logic function XOR, eXclusive OR gives as its output logical ´1´ when only one its 

input is in logical ´1´.  XOR is often described by another way that its output is in log-

ical '1' when the values of its inputs are different. It is sometimes also called NOT-

EQU or NON-EQU, but XOR name is much more common in programs or logical 

systems.  

 Logic function EQU, EQUivalence, gives as its output logical ´1´ when the both its 

inputs have equal values. Sometimes it is also known as XNOR, eXclusive NOT OR. 

XNOR suggests that this function is negated XOR, but EQU name is more frequent.  

XOR logic function can also be extended to multi-input XOR, but the similar extension has 

not greater practical meaning. Multi-input XOR has a negligible usage, unlike to widely im-

plemented multi-input AND and OR functions. Two-input XOR is enough for the vast majori-

ty of circuits; on the other hand, it uses to be a critical component here. 
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2.6 Operators and logic functions 
Taking ordinary mathematical expression, such as x = a + (- b) * c, then the evaluating of this 

expression is performed by the chain of function calls that can be drawn as an expression tree: 

 

or it can be written as: x =  fn_plus( a, fn_multiply( c, funkce_negate(b))). Function negation, corre-

sponding to a unary operator, has one input p1 and returns r (result), while the remaining func-

tions have two inputs, p1 a p2 because they evaluate binary operators.   

Logic functions are also more likely written with the aid of operators than in functional 

forms. Figure 10 depicts an overview of some possible symbols. The highlights emphasize the 

most frequent symbols whose choice follows primarily from computer keyboards.  

 

Figure 10 - Symbols for logical operators 

The most appropriate symbols for AND and OR operators would have been probably symbols 

 aused by predicate logic, but they are troublesome for entering on standard keyboards. 

We prefer symbols '+' and '.' that denote additions and multiplications in arithmetic. However,  

'+' and '.' have entirely different properties as Boolean operators!  

The arithmetic addition is not distributive over multiplication, but logical OR function is 

distributive over logical AND function, see yellow highlighted cell in the table below. More-

over, the addition and multiplication are not idempotent operations, but AND function and 

OR function have this property, see green highlighted cells.  

  commutative associative distributive idempotency 

AND  ´.´ a.b = b.a a.(b.c) = (a.b).c  a.(b+c) = (a.b)+(a.c) a.a = a 

OR  ´+´ a+b = b+a a+(b+c) = (a+b)+c  a+(b.c) = (a+b).(a+c) a+a = a 

Higher priority (precedence) of multiplication before addition misleadingly induces prece-

dence of AND before OR, for which no real foundation exists. The both logic operations have 

equal status. However, the higher precedence of AND is frequently introduced for reducing 

the number of necessary brackets, e.g. in languages C or Java. To the contrary, AND prece-

dence does not exist for example in VHDL language for designing of circuits. 

Exercise: Try to prove the laws in the table above with the aid of the fact that we can under-

stand AND and OR functions as selections of a minimum and a maximum, see Chapter 2.5. 
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2.7 Logical diagram 
Logical diagram or logical schema of simple logic functions is, in fact, a process of its evalua-

tion that creates syntactic analyzer (a parser) from a logic expression.   

We take the example of Y= (not (A and B)) or (C and D). Since unary operations have 

higher precedences in general than binary operations, we can skip braces marked in red. We 

write the function abbreviated as Y= not (A and B) or (C and D), respectively, with the aid of 

operators "+" , "." a "´" also as Y=(A . B)´ + (C . D) .  

Its evaluation can begin by the left operation AND: λ0=A.B [λ0=A and B], where λ0 de-

notes its intermediate result. Its negation is: λ1=λ0´=(A.B)´ [λ1=not (A and B) ]. Then, we 

evaluate the next operation AND: λ2=C.D [ λ2=C and D ]. Finally, we join both intermediate 

results λ1 a λ2 by operator OR to Y=λ1+λ2 = (A.B)´ + (C.D)  [Y= not (A and B) or (C and D)]. 

Figure 11 depicts its evaluation. Operations labeled by their names are on the top, but 

below, the same scheme is drawn by the far more common method, with the aid of symbols. 

For historical reasons, the graphical symbols for logical operation are often called logic gates. 

 

Figure 11 - Logical diagram and its logical expression 

Logic diagram, like the tree expression, describes the exact procedure of evaluation. If we 

have, for example, functions N = A . B . C . D  and R = A + B + C + D with more AND or OR op-

erations, we can evaluate them by several ways. Figure 12 depicts some of them. 

 

Figure 12 - Some possibilities for the evaluation of AND and OR 

Results of N1 and R1 are evaluated by concatenating logical operations. We use here associa-

tive properties of AND and OR functions. Results of N2 and R2 are calculated by another 

chaining of operations into a tree. Last N3 and R3 utilize multi-input AND and OR functions 

introduced in Chapter 2.5, which compute multiple logical operations in a single step. 
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From a mathematical point of view, N=N1=N2=N3 a R=R1=R2=R3, because the logical 

result does not depend here on the order in which we evaluate logic function. During its reali-

zation, it usually also does not matter, because we ask in many cases only correct logical out-

come,
4
 so we choose the method that we have liked. 

In schemes, logic gates AND and OR sometimes have more inputs than we need. It can 

happen for some structural reasons, or even because a used graphical editor does not offer 

appropriate gate☺.  

With the multiple elements, we can reduce the number of inputs in several ways. For 

AND and OR operations, we can connect inputs of a multi-input logic gate to the same signal 

due to idempotent law, see Chapter 2.5 on page 14, by this way, we reduce the number of 

inputs, as shown in Figure 13. If we connection all inputs of multi-input logic gates together, 

we obtain buffer, which was previously described, see Figure 7 on page 14. 

 
Figure 13 - Reducing number of inputs AND and OR gate 

We can also connect to AND and OR gate inputs that we do not need to constants.  

 AND corresponds to the minimum of inputs, so we can connect its unused inputs to 

the maximum, i.e., to logical '1' that does not affect the result, see function NX.  

 On the contrary, OR corresponds to the maximum of inputs, so we can connect its un-

used inputs to the minimum, i.e., to logical ´0´ that does not affect the result, see func-

tion RX. 

Important note: If you leave any unused input unconnected (floating), then it is always a seri-

ous error in your design
5
. Development tools for circuits try to correct such omissions. They 

announce floods of warnings, and they automatically connect floating inputs to '1' or '0'. 

Howeaver, they may not always hit the appropriate values, and the following search for such 

unconnected errors can be greedily "time-consuming".☺ 

                                                 
4
 Evaluations of individual logic functions Nx or Rx have different maximum length of paths between in-

put and output, so we get the results with different time delays. Usually, it does not matter. We are interested 

only in correct results. Situations when we must take into account times of evaluations are beyond the scope of 

this publication. They will be discussed in lectures. 
5
 Even if unconnected (floating) input does not affect the operation of a circuit, it increases electrical 

noise in it. The phenomenon will be explained in very advanced lectures. 
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2.7.1 Bubbles of negations 

In logical diagrams, inventors are often not inserted as full schematic symbols, but they are 

reduced to small circle or bubble. Symbols for logic functions NAND and NOR, which were 

shown in Figure 9 on page 15, consist of functions AND and NOT, respectively OR and 

NOT, but they are abbreviated. Instead of drawing entire inverters (NOT), we append only 

bubbles to outputs of AND, or OR respectively, as negation signs, see Figure 14.  

 
Figure 14 - Gates NAND and NOR 

Since the following law holds: not (not a) = a, in the words, two negations cancel each other 

out, then two subsequent bubbles of negations are also cleared as  Figure 15 shows. 

 
 

Figure 15 - Double negation 

Bubbles of negations are also used as outputs and inputs, see Figure 16 bottom right, where is 

drawn equation X = (A´.B)´ by one gate with bubbles:  

 
Figure 16 - Bubble of negations for inputs and outputs 

2.7.2 Implementation of logical diagrams 

In earlier times, logical diagrams also served for the direct implementation of logic 

functions. Graphical symbols were implemented by circuits called logic gates, which per-

formed operations directly OR, AND, NOT, NAND, NOR, XOR, and others. Logical dia-

grams had represented a sort of construction plans of entire circuits. 

The development of modern circuits have moved this way to history, so it slowly be-

came almost as rare as, for example, circuits with vacuum tubes. Today, logic is overwhelm-

ingly implemented by programmable logic arrays, and the name "gate" remains mainly as a 

synonym for logical operations. 

Logical diagrams are still frequently used for their clarity. For smaller logic function, 

they easier display dependencies of outputs on inputs and the cooperation of logic functions 

with advanced logic circuits. 



20 

 

2.7.3 Conversion of logical diagram to expression 

To conclude this section, we convert a logical diagram to a logical expression. Because the 

diagrams show the evaluation process of a logic function, so we can just follow the paths and 

write performed operations as logical operations. We demonstrate it on an example. 

Example - Write logical expression corresponding to the logical diagram below. 

 
Solution: We can begin either from the left side of the diagram, in the direction of its calcula-

tion, or vice versa from the end. We show the second method, which is more versatile. It can 

also convert very complex circuits with internal loops. First, we label outputs of the blocks. 

 

The diagram contains XOR gates so that we write operators by words. Output Y is: 

  Y = λ2 or λ1 (eq1) 

Intermediate result λ1 consists of AND operation with output bubble of negation, 

so λ1 = not (λ2 and λ3). We substitute λ1 into (eq1):  

  Y = λ2 or not (λ2 and λ3) (eq2) 

Now, we evaluate λ2 = A xor B and substitute it into (eq2) instead of two λ2  

  Y=(A xor B) or not ((A xor B) and λ3) (eq3)  

Finally, we get λ3 = B xor C and substitute it into equation (eq3), which gives the result: 

  Y=(A xor B) or not ((A xor B) and (B xor C )) (eq4) 

We can rewrite the equation (eq4) with the aid of other symbols for operators AND, OR, and 

NOT. We leave XOR written by its name 

  Y=(A xor B)+((A xor B).(B xor C))´ 

~o~ 

Here, we close the basics of logic functions. Try to solve the test in the next part. 

However, for the understanding of more complex operations such as adders or counters, 

you still need to know the basics of internal coding of integers, types of signed and unsigned 

integer, and hexadecimal notation, BCD numbers, and ASCII character encoding. Most stu-

dents have certainly met with these concepts in programming courses, but we rather repeat 

them in the next chapter. 
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2.8 Test from knowledge of Chapter 2 
Try to answer 4 questions from memory, i.e., without any aids. The correct solution is in the 

appendix. 

Question 1: Fill unfinished truth tables of logic functions: 

x3 x2 x1 AND(x1,x2,x3) OR(x1,x2,x3) NAND(x1,x2,x3) NOR(x1,x2,x3) 

0 0 0     

0 0 1      

0 1 0 0    

0 1 1  1   

1 0 0   1  

1 0 1    0 

1 1 0     

1 1 1     

 

x2 x1 XOR(x1,x2) EQU(x1,x2) 

1 0   

1 1    

0 0 0  

0 1  0 

Question 2: Rewrite the table left as Karnaugh map. 

x1 x0 y1 y0 X_LESS_Y 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 - 1 

0 1 0 - 0 

0 1 1 - 1 

1 0 0 - 1 

1 0 1 0 0 

1 0 1 1 1 

1 1 - - 0 
 

 

Question 3: Write the logical expression that is realized by the following logic diagram: 

 
F(X,Y,Z)=............................................................................................. 

Question 4: Draw the logical diagram of the following logic function: 

G(X,Y,Z) =  not( (not X xor Y) and not (not Y or Z) )  
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3 Integers expressed in binary system 
Maybe you have already heard somewhere the following joke or some its modification: 

After a car accident, a programmer signed me the compensation of 1000 €. 

He paid me ten euros that he gave me two euros extra. 

Its punchline is based on the fact that 1000 in a binary system is always decimal 8. May or 

may not. The value depends on the method of coding numbers and the bit length of the 

numbers. Computers use different lengths of binary numbers, but usually only multiples of 8 

bits (byte length). The lowest bit is located on the right, while the highest bit to the left. 

  

Word "bit" originally means a small quantity of food. 4 bits are sometimes called "nibble" (a 

trifling quantity of food). The size of 8 bits is known as "byte" whose origin comes from a 

deliberate respelling of bite (a small amount of food). The size of 8 bits is also called "octet".  

In logic circuits, a binary number may have arbitrary positive length, i.e. a length great-

er than zero. There is no limit to the entire number of bits. The lowest bit can lie to the right 

(as in the picture above) and left. However, even circuits prefer the classical computer ar-

rangement with the lowest bit to the right. The abbreviations mark the order of bits: 

MSB "most significant bit" or "high-order bit". MSB is also used for specifying the or-

dering of bytes as "most significant byte".   

LSB has the opposite meaning "least significant bit" or "right-most bit". LSB is again 

used for specifying the ordering of bytes as "least significant byte".   

We must distinguish from the context of a text whether MSB and LSB refer to a bit or a byte. 

A length "word" indicates the native bit length of a processor. 32bit processors have 

"word" length 32-bits, 64-bit processors 64-bits. Word is not always and everywhere a 16-bit 

binary number, as it is sometimes mentioned mistakenly
6
. For example, "Apollo Guidance 

Computers" used in the flight to the Moon have 15-bits word. 

The binary number is merely a sequence of 1 and 0, and its decimal value can be decid-

ed only by the specifications of the method which has been selected for encoding the decimal 

numbers. In the following text, we analyze the most frequently used ways. 

                                                 
6
 An exception of word-width can be found in industrial programming languages for PLCs (programma-

ble logic controllers), where the word is defined by standard IEC 1131-3. It introduces WORD type as a 16-bit 

length. Derived term DWORD (double word) defines 32-bit type and LWORD (long word) 64-bit type. The 

standard IEC 1131-3, however, relates only to PLCs, it does not apply elsewhere. 

Figure 17 - Byte, bit, MSB, LSB 
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3.1 Unsigned binary 
Unsigned binary, by the whole name "binary encoded unsigned integers", 

represents the base for binary numbers. Its principle is based on the mathe-

matical fact that the sum of all previous members of 2
N 

series
 
is always less 

by one than the following member. For example, the sum of the first four 

members of the series 2
0
+2

1
+2

2
 +2

3
 = 1+2+4+8 = 15 = 2

4
-1. In general: 

         
   

   
       (1) 

We can express any nonnegative integer as the sum of selected members of 

2
N
 series. If a member of the relevant powers is used, we write bit 1, other-

wise 0. String x ≈  bm-1 bm-2 ... b1 b0 of m-bits is called a binary encoded 

unsigned integer, hereinafter an unsigned binary, and it has a value: 

      
    

   
          (2) 

For example, if we take string 1100100 as unsigned binary, we receive dec-

imal value 100: 

1*2
6
 + 1*2

5
 +  0*2

4
 + 0*2

3
 + 1*2

2
 + 0*2

1
 + 0*2

0
 = 

64 + 32   + 4   =100 

The equation (1) ensures that there is exactly one combination of some 

members of 2
N 

series, whose sum gives the number, and each member of the 

series occurs in the sum at the most one time. In other words, the coding has 

bijective property, i.e., correspondence one-to-one. 

 

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

11 2048 

12 4096 

13 8192 

14 16384 

15 32768 

16 65536 

17 131072 

18 262144 

19 524288 

20 1048576 

3.1.1 Changing bit width of numbers 

Bits '1' only determine the value of an unsigned binary number. We can insert any num-

ber of zeros in front of if without changing its value. For example, unsigned binaries: 

1100100, 01100100, 001100100, 0001100100, and so forth, have the same decimal value of 

100. Here, we assume unlimited bit length. In practice, the width of binary numbers is limited, 

so we can, of course, add only as many zeroes to fit in a given limit. 

3.1.2 Logical shifts 

The operation of logical left shift appends bit 0 after the binary number, i.e., to its right side. 

For example, unsigned binary 101, corresponding to decimal 5 (2
2
+2

0
), changes by its logical 

left shift to 1010 that has double decimal value, i.e. 10. Each 1-bit was in fact moved below 

the next member of 2
N
 series with a double value. Similarly, 10100 with appended two 0 bits 

has quadruple decimal value, i.e. 20, and 101000 is eight times of the original value, i.e. 40. 

  2
5
=32 2

4
=16 2

3
=8 2

2
=4 2

1
=2 2

0
=1  

8*5=40 =32+8 1 0 1 0 0 0  

4*5=20 =16+4  1 0 1 0 0  

2*5 =  10 =8+2   1 0 1 0  

5 =4+1    1 0 1  

If we have limited bit width, then the value of a number is doubled by logical left shifts as 

long as the leftmost bit in 1 reaches the end of storage for our number.  
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For example, if we have unsigned binary 101 stored in 8 bits, i.e., as 00000101, then its 

value is always doubled after its first 5 logical left shifts, i.e., to the value 10100000, which 

corresponds to the decimal number 5 * 25 = 5 * 32 = 160. Another logical shift left gives re-

sult 01000000 that is decimal 64. The highest bit 1 was lost due to the limited 8-bit width. An 

arithmetic overflow occurred. We will discuss it more in Chapter 3.1.5. 

Programming languages based on the C language defines bit left shift operator  << 
7
 that 

is followed by the length of the shift in bits. If we have variable byte x = 5; (in C language as 

unsigned char x=5;) then:  2 * x  == (x << 1) , or   4*x == (x << 2), and so on up  32*x == (x << 5).  

The logical right shift corresponds to the operation of integer dividing by 2, since bits 1 

are shifted to previous members of 2
N
 series. The integer division gives a result and a remain-

der. If we shift unsigned binary 101 by one bit to the right, the result is 10, decimal 2. The 

lowest bit 1 that has fallen out from 101 is the remainder.  

  2
5
=32 2

4
=16 2

3
=8 2

2
=4 2

1
=2 2

0
=1  

5 =4+1    1 0 1  

5/2 = 2 

 the remainder 1 

=2     1 0 -> 1 

In C language, operator  >> is only a partial implementation of logical left shift because 

the operator does not give the remainder. For variable byte x = 5; it can be used only as integer 

dividing by 2. It holds:  (x% 2) == 1 , (x >> 1)==2 and x / 2 == 2.  

Programming languages often translate integer multiplications and divisions by con-

stants that are equal to 2
N
 powers with the aid of shifts because they are very fast operations. 

3.1.3 Conversion of unsigned binary to decimal number 

Method 1: the Decimal value of a binary string taken as an unsigned binary is equal directly to 

the sum of the corresponding member of 2
N
 series, where N is the number of the specific bit. 

If we have a binary string X = 10011, which has 1-bit on the 4
th

, 1
st
, and 0

th
 position, 

then we can determine its value as the sum of corresponding members of the series: 

X=10011 -> 2
4
 + 2

1
 + 2

0
 = 16 + 2 + 1 = 19 

If the binary string is longer and with more 1-bits, such as Q = 11111110110, then its 

conversion by the sum would be more challenging. Our Q has length of 11 bits, and the most 

of them are 1-bits:  

bit 10 9 8 7 6 5 4 3 2 1 0 

Q 1 1 1 1 1 1 1 0 1 1 0 

We can shorten the calculation by the property given in equation (1) that the value of the fol-

lowing member of 2
N
 series is always by 1 greater than the sum of all previous members. So 

we know that: 

2
11

-1 = 2048-1 = 2047 = 2
10

+2
9
+2

8
+2

7
+2

6
+2

5
+2

4
+2

3
+2

2
+2

1
+2

0 

If we compare 2047 with our Q, then Q corresponds to nearly the same sequence of 2
N 

series 

members, in which two members 2
3
 and 2

0
 are only missing. It means 

Q = 11111110110 -> 2047 - 2
3
 - 2

0
 = 2047-8-1 = 2038 

                                                 
7
 In language C ++, bit shift operators << and >> are usually overloaded by some includes (as iostream.h) 

to reading from and writing to data streams but they still behave as shifts for number arguments. 
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Method 2: We can also use logical left shift operations and calculate the value by a polynomi-

al Horner scheme (see this name in Wikipedia). 

We begin with the highest bit. We take the bit and write it as our result that is 1 or 0. If 

there is the next bit, we multiply the result by 2 or add the value of this next bit (1 or 0) to the 

result. We repeat the process until the lowest bit is added. 

10011 

1 → 1*2+0=2 → 2*2+0=4 → 4*2+1=9 → 9*2+1=19 

Another example, in abbreviated notation: 

11111110110 

1 → 2+1=3 → 6+1=7 → 14+1=15 → 30+1=31 → 62+1=63 → 126+1=127  

→ 254+0=254 → 508+1 → 1018+1 = 1019 → 2038+0=2038 

We cannot recommend method 2 for hand calculations, based on our experience. The method 

alternates operations multiplication and addition, so it is not entirely mechanical. We can easy 

make a numerical error. However, the method is very suitable for the algorithm that converts 

unsigned binary to BCD numbers, Chapter 3.5.2, page 41. 

3.1.4 Conversion of decimal number to unsigned binary 

For simple conversions, we can apply either repeated subtractions or division by 2 

3.1.4.1 Repeated subtractions 

We found the largest member of 2
N
 series that is still less than the converted decimal. For 

example, if we have 35, we select 2
5
 = 32. We begin the subtractions from it. 

decimal number subtracted member new decimal binary result  

35 -32 3 1 MSB 

3 -16 no 0  

3 -8 no 0  

3 -4 no 0  

3 -2 1 1  

1 -1 0  (end) 1 LSB 

If the decimal is bigger than the member of the series, so we write 1 bit, we subtract the 

member. Otherwise, we write bit 0 and we try the lower member of the series. We repeat until 

we obtain 0. The result of the conversion of decimal number 35 is unsigned binary 100011. 

Repeated subtractions require knowledge of 2
N
 series. We easy learn its several beginning 

members, but repeated divisions are more comfortable for converting of large decimals. 

3.1.4.2 Repeated divisions by 2 

The method is derived from logical right shifts, Chapter 3.1.2 on page 23. We divide given 

decimal number by 2 until the quotient becomes zero. We write down the reminders after in-

teger divisions from the least significant bit (LSB) to the most significant bit (MSB).  

The algorithm ends after obtaining quotient 0. In the case that we are converting a dec-

imal number greater than 0 then the remainder of the last division is always 1, which is the 

leftmost bit of obtained binary result. 
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35 / 2 = 17 remainder of integer division 1  - the least significant bit 

17 / 2 = 8 remainder of integer division 1 

8 / 2 = 4 remainder of integer division 0 

4 / 2 = 2 remainder of integer division 0 

2 / 2 = 1 remainder of integer division 0 

1 / 2 = 0 remainder of integer division 1 - the most significant bit 

We can write algorithm more briefly. We just divide a decimal by 2, and we retrospectively 

determine remainders from intermediate results. Odd results have remainders 1. 

For example, we convert decimal number 1000 to unsigned binary. In the next line, symbol 

→ indicates that the right number was derived as quotient of dividing left number by 2: 

      1000  →  500 → 250 → 125 → 62 → 31 → 15 → 7 → 3 →  1     →  0 

If we write the odd numbers as bits 1 and 0 then we get unsigned binary 1111101000 .  

We lined up bits from the lowest, i.e., in the reverse order than the row of the numbers.  

Note that it would not mind if we have also included the last →  0. In that case, we have 

obtained a binary number 01111101000 that has the same value, see paragraph 3.1.1. 

3.1.5 Arithmetic overflow during additions and subtractions 

Computers and digital circuits always store a finite number of bits. If we are adding 1 to 

a number, then the number eventually reaches its maximum value. For unsigned binary, the 

maximum contains only 1 bits. Their count is given by bit length of a binary number. 

 Carry 27 26 25 24 23 22 21 20 

254  1 1 1 1 1 1 1 0 
+1         1 

255  1 1 1 1 1 1 1 1 
+1         1 

0 1 0 0 0 0 0 0 0 0 
+1         1 

1  0 0 0 0 0 0 0 1 
Table 3 - Adding +1 to 8bit unsigned binary 

The maximum unsigned 8-bit binary number is 11111111 representing decimal 255. If 

we add +1 to it, we get the unsigned binary=100000000, which correctly corresponds to dec-

imal 2
8
 = 256, but it has nine bits. In 8-bit binaries, we can save only its lower eight 0 bits. 

The highest bit must be thrown away, so our result, in fact, equals to 0. 

The removed highest bit is called Carry, from carry to a higher order. For arithmetic of 

unsigned binary numbers, it announces an arithmetic overflow error, i.e., the exceeding of the 

maximum value for the given bit length.  

When we are subtracting 1, the overflow can also occur. We can imagine the subtraction 

as a progression from the bottom up in Table 3. Then, operation 0 minus 1 gives here decimal 

255 as its result. In logic circuits, the overflow of the opposite direction from 0 to the maxi-

mum, is sometimes called Borrow, because it borrows a bit from a higher order.
8
  However, 

the both directions are frequently called as Carry. 

                                                 
8
 Most processors do not distinguish overflow directions and their ALUs generate Carry in the both cases. 

Whether it was a Carry or a Borrow we can find out only according to executed assembler instruction. Addition - 

Carry, subtraction - Borrow. 
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If we subtract one from zero, the overflow always occurs, and the binary result is filled 

by bits 1. It is the maximum value of unsigned binary. The bit width only determines the 

decimal value of this wrong result of the subtraction zero minus one, (0-1). For example:   

for 8 bit unsigned binary, (0-1) = 2
8
-1 = 255,  

for 9 bit unsigned binary, (0-1) = 2
9
-1 = 511 

for 16 bit unsigned binary, (0-1) = 2
16

-1=65535, and so on. 

The result of the subtraction 0-1 in decimal counting is -1. The value of overflow result for 

unsigned binary numbers of limited length is determined by correcting 2
m

, where m represents 

bit width of binaries. When the result is less than zero, we add 2
m 

until we get a positive num-

ber. If the result is greater or equal to 2
m

, then we subtract 2
m

. 

Question 1: In 4-bit unsigned binary arithmetic, what is the decimal value of the result for two 

decimal numbers when adding them 14 + 4 and when subtracting them 4-14? 

Answer: We evaluate 14+4=18. The result is over 2
4
=16, so we correct it by 18-16=2. 

  We evaluate 4-14 = -10. The result is less than 0, so we correct it by -10+16 = 6. 

We can imagine the previous calculations on the wheel with numbers, see Figure 18. Addition 

operations correspond to rotating the wheel counter-clockwise and subtractions to turning the 

wheel clockwise. A count of wheel cogs, for which the wheel turns, is determined by the 

number that we add or subtract. The figure shows that the number 14 is about 4 positions 

counterclockwise from the number 2 (14 + 4 = 2) and number 4 is about 14 positions clock-

wise from number 6 (4-14 = 6). 

 
Figure 18 - Adding and subtracting unsigned binary 

Question 2:  In 8-bit unsigned binary arithmetic, what is the decimal result of the addition of 

two decimal numbers 200 and 100? 

Answer: We add numbers, 200+100 = 300. The result is over 2
8
 = 256. We subtract correc-

tion 2
8
: 300-256=44. The result is 44.  

Question 3: In 10-bit unsigned binary arithmetic, what is the decimal result of the subtraction 

of two decimal number 1000-1500? 

Answer: We evaluate 1000-1500 = -500. The result is less than 0, so we add 2
10

 = 1024, so 

-500+1024=524. The result is 524. 

Question 4: In 5-bit unsigned binary arithmetic, what is the decimal result of the addition of 

two decimal numbers 10 a 20? 

Answer: We add 10+20=30. The result is positive and less than 2
5
=32. No correction is 

required. 
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3.2 Signed integers in two's complement 
For integers with a sign, several different codes exist, of which the most used is two's com-

plement based on the arithmetic overflow, Chapter 3.1.5. 

If we have unsigned binary x stored in m-bits, we can create its one's complement χ by 

negating of all its bits. The sum x+ χ is unsigned binary with all bits in 1 because χ has bits 1 

in such positions where x has bits 0.  

The sum x+ χ = 2
m 

-1 is the maximum unsigned binary. If we add +1 to χ, then we ob-

tain x+( χ+1 )= 2m.  The result 2m 
has bit length m+1. We can store only m lower bits that are 

all equal to 0. For m-bit unsigned binary, therefore, the following holds x+( χ +1) = 0.  

For this property, (χ+1) is called two's complement of x. 

For example, If we have 4-bit unsigned binary, then decimal number 4 is coded as 0100. 

Its one's complement (the negation of all its bits) is 1011 (χ). If we add +1 (binary 0001) to χ 

then, we get 1100 (χ+1) which is two's complement of 0100. The sum  0100+1100 =10000. 

The result 10000 considered as unsigned binary has decimal value 16, but 10000 has 5-bit 

width. Into 4-bit binary, we can store only its lower bits 0, thus, the result equals to 0000. The 

arithmetic overflow has occurred.  

We define signed integers in two's complement, hereinafter referred to signed binary, as: 

 The negation of unsigned binary number is its two's complement, 

 Further, we specify that a m-bit binary, which has bit 1 in its most significant bit 

(i.e. in the bit with weight 2
m-1

), encodes a negative decimal number.  

For 4-bit arithmetic, signed binary are shown in Figure 19 to the right. Signed binary 

1000, with decimal value -8, has here particular position. Its two's complement also exists, but 

it is a binary 1000 itself. Because 1000 has 1 in its upper bit, it represents negative decimal 

number -8, to which no positive decimal counterpart exists in 4-bit arithmetic. This asym-

metry is only one drawback of signed binaries (signed integers in two's complement). 

 
Figure 19 - 4-bit unsigned and signed binaries 

Otherwise, signed binaries provide only benefits. We calculate their additions and 

subtractions by the same way as unsigned binaries. Therefore, we can use the same computing 

unit for both representations of numbers. It depends only on us, whether we interpret the re-

sults of the operations as unsigned or signed binaries. Moreover, the coding of positive inte-

gers is the same. Two's complement is calculated only for negative integers. 

For the advantages mentioned above, signed binaries (signed integer in two's 

complement) are the ultimate way for storing signed integer numbers (in C, signed int type). 
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3.2.1 Important properties 

Signed binary have significant properties worth remembering.  

 Number 0 is always coded by all bits 0. 

 If we denote the bit length as m, then we can convert decimal numbers in the range -

from 2
m-1

 to 2
m-1

 -1, the other numbers are out of the range. For example, for m = 4, 

the range is from -2
3
 to 2

3
 - 1, thus from -8 to 7. 

 A signed binary having 1 followed by m-1 bits 0 is always the least number, and its 

decimal value is equal to -2
m-1

. This number is also the only anomaly - its positive 

counterpart does not exist in given bit length. For example, if we have 8-bit signed bi-

naries, then their least binary is 10000000 with decimal value -2
8-1

 = -2
7
 = -128. 

 Signed binary having 0 followed by m-1 bits 1 is always the greatest number and its 

decimal value equals to 2
m-1

 -1. For example, if we have 8-bit signed binaries, then 

their greatest binary is 01111111 and its decimal value is 2
8-1

 -1 = 2
7
 -1 = 127. Note: 

Its counterpart, decimal -127, is coded as 10000001. It is greater by 1 than -128. 

 Signed binary having all bits 1, i.e., m bits 1, is always equal to decimal -1. For exam-

ple, if we have 8-bit signed binaries, then -1 is coded as 11111111. Note: Decimal -2 

is stored as 11111110 because it is less by 1 than -1. 

3.2.2 Arithmetic negation by two's complement 

Let us have a signed binary (signed integer in two's complement) of known bit length m. We 

find its negative number (arithmetic negation) by algorithm of two's complement: 

a) we logically negate all its bits (one's complement), 

b) then, we add 1 to the result to obtain two's complement of the original binary. 

Example 1: Calculate arithmetic negation of 8-bit signed binary 01100100, having deci-

mal value 100.   

Answer: We create one's complement by negating all its bits  01100100→10011011. 

Finally, we add 1 to it, i.e., 10011011+00000001 = 10011100. 

Example 2: Calculate arithmetic negation of 10-bit signed binary 1000000000, (decimal 

value -512). 

Answer: The example is a trick question. The correct answer is: "we cannot", see 

Important properties above. 

3.2.3 Conversion of decimal number to signed binary 

To convert a decimal number, we must always know the bit length of the desired signed bina-

ry number. We again denote the bit length as m. For bit length m, We can convert only inte-

gers that satisfy the range of signed binaries from 2
m-1

 to 2
m-1

 -1, paragraph 3.2.1 

 We convert positive integers as unsigned binaries. 

 We convert negative integers by any of the following methods, in which we denote an 

entered negative decimal number as  -x 

a) We convert the absolute value -x, i.e. | -x |, as an unsigned integer and create its 

two's complement. The disadvantage of this method is the necessity of binary 

adding 1 when calculating the two's complement. 
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b) To avoid binary addition, we can convert the absolute value of the decimal 

number reduced by 1, i.e., |-x|-1, to unsigned binary. Its one's complement 

(negation of all its bits) is equal to two's complement of |-x|. 

c) Alternatively, we can convert ( 2
m 

- x )  to m-bit unsigned binary. If we take 

the result as m-bit signed binary, it is equal to -x. This method uses the direct 

the way in which signed binaries in two's complement have been defined. 

How do we verify that we remember a method? We need to know one decimal and its 

correct conversion to signed binary. For example, decimal -1 is always converted to all 

bits 1. First, we try to convert our known number by any of the methods above. If we 

get the correct result, we remember the calculation process correctly. 

Remember: We can always verify our conversion of -x by the addition: -x+x=0 

Example: Convert decimal  -12 to 8-bit signed binary: 

 Calculation by a)  First, we convert absolute value  |-12| = 12 to 8-bit unsigned binary 

as 00001100. We create one's complement of the result by the negation of its bits as 

11110011. Then, we increment it by 1, so 11110011+00000001 = 11110100. 

 Calculation by b):   |-12|-1 = 11. Decimal 11 as 8-bit unsigned binary is 00001011. 

Then, we perform one's complement of the result: 00001011 → 11110100. 

 Calculation by c):  2
8
-12 = 256-12 = 244. Decimal 244 converted to 8-bit unsigned bi-

nary is 11110100. The same number 11110100 taken as 8-bit signed binary has deci-

mal value -12.  

3.2.4 Conversion of signed binary to decimal 

To convert binary numbers, we must again know the bit length of the desired signed binary 

representation. We again denoted it as m.  

 Signed binary numbers with 0 in their most significant bit (MSB) are converted by the 

same ways as unsigned binaries. 

 Negative signed binary numbers, i.e. with MSB equal to 1, can be converted by one of 

the following ways, which are reversed versions of the previous methods in 3.2.3. 

a) First, we calculate two's complement of the signed binary, and we converted it 

as unsigned binary to number, which we denote x. Finally, we change its sign 

to minus, so -x. 

b) We can perform only one's complement (logical negation of bits) of our signed 

binary. Then, we convert the result as unsigned binary to decimal that we de-

note as y.  The required result -x is given by:  -x = -y-1. 

c) Alternatively, we can convert the entire signed binary as an unsigned binary to 

the number that we denote as z. The required result -x is given by -x = z-2
m

.  

Example: Convert 9-bit signed binary 000111000 to a decimal number. 

Solution: The most significant bit is 0. Therefore, we convert the binary by the same 

ways as an unsigned binary. For example, we apply adding of the weights of its 1-bits: 

2
5
+2

4
+2

3
 =  32+16+8=56. 



31 

 

Example: Convert 8-bit signed binary 11001100 to a decimal number. 

Solution: MSB is 1. Thus, we apply the methods for negative binaries: 

 Calculation by a)  We evaluate two's complement of signed binary 11001100: 

00110011+00000001=00110100. Then, we convert 00110100 as unsigned bi-

nary to 52. The searched result is its negation, so -52. 

 Calculation by b): We evaluate one's complement of  11001100 → 00110011. 

Then, we convert it as unsigned binary: 00110011 → 51. The searched result is 

-51-1 = -52. 

 Calculation by c):  We convert signed binary 11001100 as unsigned binary, for 

example, by adding weights of 1-bits: 128+64+8+4=204. The searched result is 

204-2
8
= 204-256=-52.  

3.2.5 Change of bit length - sign extension 

In front of an unsigned binary number, we can add 0 bits without changing its value, see 

3.1.1. To preserve the value of a signed binary number must utilize sign extension which 

maintains the most significant specifying whether the number is positive or negative.  

  
Inserting bits 0 in front of unsigned binary  Sign extension  

for signed binary in two's complement 
Figure 20 - Signed extension 

Figure 20 shows the differences between binary numbers. While are always insert bits 0 for 

unsigned binary, we must copy the most significant bit (MSB) for signed binary. 

Conversely, if we decrease the length of a binary number, we can remove all leftmost 

bits 0 of an unsigned binary. For a signed binary, we can remove either the most significant 

bits 0 and 1 in the case that we preserve the value of the original most significant bit. 

Example 1:  Extend 4-bit signed binary 0111 to 8 bits. 

Solution: The most significant bit 0 is copied into inserted bits, so the result is 0000 0111. 

Example 2: Extend 8-bit signed binary 1000 0010 to 16 bits. 

Solution: We again copy MSB=1 into inserted bits, so the result is 1111 1111 1000 0010. 

Example 3: What is the shortest possible bit length for 8-bit signed binary 1110 0100? 

Solution: We can remove only 2 bits 1. The shortest length is 6 bits, so 10 0100. 

Example 4: What is the shortest possible bit length for 8-bit signed binary 0000 0100? 

Solution: The shortest length is 4 bits, so 0100. 
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Note: The type of a binary number determines whether we must perform its sign extension. 

Machine codes of processors contain different instructions for loading signed and unsigned 

data from smaller size to larger one. For example, MIPS CPU loads unsigned byte to a 32-bit 

register by LBU instruction, but it has LB instruction that performs sign extension for byte 

containing a signed binary in two's complement. Processors of x86 family use MOV instruc-

tion and MOVSX for the same purposes. Compilers of higher languages select machine code 

instructions according to types of variables.  

3.2.6 Logical and arithmetic shifts 

The need to preserve the sign bit requires different shift operations with binary numbers, so 

we use two different shifts. Unsigned binaries require logical shifts and signed binaries 

arithmetic shifts that respect the sign bits. 

Figure 21 depicts right shifts for 8-bit binary "hgfedcba" in which ´a´ is LSB and ´h´ is MSB. 

If a binary represents unsigned format, we perform right shifts by inserting 0-bits. If we have 

a signed binary, then we utilize arithmetic right shifts, in which the highest bit (MSB) remains 

firmly in its place, here ´h´.  

For example, 8-bit string 11101011 changes after the logical right shift to 01110101, 

while it changes to 11110101 after arithmetic right shift. In contrast for 8-bit string 01101010, 

whose MSB=0, the both logical and arithmetic shifts give the same result 00110101. 

Input Decimal value as Left shift After the shift Decimal value as 

11101011 unsigned= 235 logical  01110101 unsigned= 117  

 signed=  -21 arithmetic 11110101 signed=  -11 

01101010 unsigned= 106 logical  00110101 unsigned= 53 

 signed= 106 arithmetic 00110101 signed = 53 

From the table above, we can see that the logical right shift is suitable for unsigned binaries, 

for which corresponds to dividing by 2. The result is its quotient and the lowest bit (LSB) lost 

by the shift is its remainder. 

Arithmetic right shifts are necessary for signed binaries to preserve their sign bits. For a 

positive signed binary, the result is the quotient of dividing by 2 and the remainder is given by 

the lowest lost bit. For a negative signed binary, the quotient is rounded towards the lower 

numbers, e.g.  -21/2 = floor(-10.5) = -11, where floor() denotes rounding down.
9
  Arithmetic 

right shifts interpreted as a division by 2 give contradictory results, for example -1/2 = -1. 

                                                 
9
 In C, we have floor(...) function, floor(...) method in Java, and Math.Floor(...) method in C# . 

Figure 21 - Logical and arithmetic right shifts 

  

Logical right shift Arithmetic right shift 
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 If we replace integer dividing by 2 with the aid of arithmetic right shifts, then we must 

sometimes correct results of negative binaries to receive expected number. The corrections are 

simple; we increment the results by 1 in selected cases.
10

  Therefore, we should remember that 

the arithmetic right shift is not exact analogy integer division by 2 for signed binaries. 

Left shifts of binary numbers are the same - the logical left shift is performed as arith-

metic. Figure 22 shows the shifts for 8-bit binary "hgfedcba", in which ´a´ is LSB and ´h´ is 

MSB that is lost after left shifts.  

If there is no an arithmetic overflow, then a left shift corresponds to the multiplication 

by 2 for unsigned and signed binaries. 

  

 

Logical and arithmetic left shift 

Figure 22 - Left shift of 8-bit binary 

The two representations of binaries differ only in the condition where arithmetic over-

flow occurs during shifts, so the result value does not correspond to the original decimal value 

multiplied by 2. For an unsigned binary number, the arithmetic overflow occurs at the mo-

ment when the highest bit, which is lost when shifting, equals to 1. However, signed arithme-

tic overflow occurs at moment when the shift changes the value of MSB.   

For example, if we have 8-bit signed binary 11101011 (decimal -21), then its first left 

shift gives the result 11010110 (-42) and the second 10101100 (-84). After performing third 

left shift, we obtain 01011000 (decimal 88). The overflow has occurred. 

Another example: If we have 8-bit signed binary 00110010 (decimal 50), then its first 

left shift result is 01100100 (decimal 100). The second shift gives 11001000, which has as 8-

bit signed binary decimal value -56, thus, we have the overflow. Notice that we will have no 

overflow after the second shift in the case of the same entry taken as an unsigned binary, be-

cause its decimal value is 200. The overflow would appear here after its third left shift whose 

result will be 10010000 with decimal value 144. 

Note: The term of arithmetic overflow strictly depends on how we interpret a binary 

number. If a binary is taken as a common chain (vector) of bits with no specified numerical 

representation, then shifts just change positions of bits moving them to the left or the right. 

The shifts behave as an analogy of some conveyor belt that moves by one position, and the bit 

that lays at the end of the conveyor falls out.  

                                                 
10

 In general, processors can use the same arithmetic unit for unsigned and signed binary, which is the 

major advantage of these representations. Only in some cases, arithmetic operations with signed binaries require 

additional steps. Further, in a multiplication or division, when their operands are negative signed binary num-

bers, we sometimes must perform some corrections. However, the processors often include a special unit for the 

multiplications of negative signed binaries to speed up calculations. Negative signed binary numbers close to 

zero tend to have a lot of bits 1 and their multiplication could last too long. Detailed descriptions are beyond the 

scope of this publication. For more information, search  "Booth's algorithm" on Wikipedia 
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3.2.7 Arithmetic overflow for addition and subtraction 

In Chapter 3.1.5 on page 26, where we have discussed the addition and subtraction for un-

signed binary, we have detected the overflow by Carry, i.e. the carry to a higher order. 

However, the Carry has no practical meaning for signed binaries since it is frequently 

generated for them because they are based on the overflow of unsigned binaries, Chapter 3.2 

on page 28. 

For signed binary numbers, signed arithmetic overflow occurs when crossing the border 

between their largest and smallest numbers. For example, if we have 8-bit signed binaries, 

then their greatest number is decimal 127 coded as 0111 1111. When we increment it by 1, 

i.e. 0111 1111 + 0000 0001, then we obtain 1000 0000, i.e. their least number, decimal -128. 

We have a negative result of the sum of two positive numbers. Analogously, when we sub-

tract 1 from -128, we receive positive result 127. 

 Overflow 27 26 25 24 23 22 21 20 

126  0 1 1 1 1 1 1 0 
+1  0 0 0 0 0 0 0 1 

127 0 0 1 1 1 1 1 1 1 
+1  0 0 0 0 0 0 0 1 

-128 1 1 0 0 0 0 0 0 0 
+1  0 0 0 0 0 0 0 1 

-127 0 1 0 0 0 0 0 0 1 
Table 4 - Arithmetic overflow for addition of 8-bit signed binaries 

ALU of a processor detects similar situation by a table of sign bits of operands and results. If 

the result is, of course, incorrect, flag Overflow is generated. 

operand 1 operation operand 2 result 

positive + positive negative 

negative + negative positive 

negative - positive positive 

positive - negative negative 

Table 5 - Conditions for overflow of signed binaries 

To be exact, ALU sets after each addition and subtraction of numbers, at least four basic 

arithmetic flags
11

 to 0 or 1, to 0 or to 1, depending on the situation that has occurred 

 Carry - carry or borrow from the most significant ALU bit position
12

; 

 Overflow - overflow for signed binary numbers; 

 Sign - the result of operation is negative; 

 Zero - the result was zero. 

Additions and subtractions of binary numbers, signed and unsigned, are performed by the 

same way, so the majority of ALUs always sets all of these flags. Compiled machine instruc-

tions must test the proper flag, on which a result depends, according to the format considering 

as input operands.  

                                                 
11

 Processors have flags stored in a special register called "flag register" or "status register" together with 

other flags. Many machine instructions influence these flags, not only arithmetic operations.  
12

 ALUs set Carry also for shifts, but higher programming languages do not implement possibility to use 

Carry with shifts. 
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3.3 Signed integer in straight binary and offset binary 
Other coding methods exist for signed integers. For completeness, we mention two very 

general methods, namely straight and offset binaries.  

We can store a signed integer by encoding its absolute value as an unsigned binary and 

add a sign bit. This method is called straight binary or sign and magnitude representation ab-

breviated as sign-magnitude. 

 
Figure 23 - Straight binary (Sign-magnitude) 

 
Figure 24 - Excess K with K=8 

Figure 23 shows straight binaries for 4-bit length. In the code, there are two zeros, negative 

and positive. For example, if our result reaches to zero during the iterations, we know the di-

rection of approaching zero. Another advantage of the code is very fast arithmetic negation, 

which we create it only by changing the highest bit.  

Example: Encode decimal -15 as 8-bit straight binary. 

Solution: 8-bit straight binary has 1 sign bit and 7 bits of its absolute value. We encode  

|-15| to 7 bits as unsigned binary to 000 1111 and we add sign bit, here 1, in front 

of it, because -15 is negative. The result is 1000 1111. 

The next popular encoding is Excess-K or offset binary or biased representation. We first 

convert signed integers to nonnegative numbers by adding a fixed constant K to them, which 

is chosen by such way that the results are always positive numbers. Then, we encoded them as 

an unsigned binary number. 

If we choose of m-bit length binaries and a fixed constant K, then we obtain the range of 

decimals, that we can convert, from  -K  to  2m-1-K.  

For example, if we select 4-bit binaries and K=8, then we have the range from -8 to 7, 

see Figure 24. We can select the range of by any values of K. For example if we take K=30, 

then 4-bit binaries have the range from -30 to -15. 

Example: Encode -15 as 5-bit Excess-K binary +16. 

Solution:  -15 +16 = 1.  Decimal 1 as 5-bit unsigned binary is  00001. 

Excess-K Additive code performs arithmetic operations with (x + K) and (y + K) numbers 

instead of the numbers x and y. For example, the result of x + y is (x + y) + 2 * K. It means 

that we must always correct it by subtracting K. The corrections of multiplications are more 

complicated, and we cannot perform division directly in this code. 

Straight and K-excess codes are unsuitable for immediate calculations because conventional 

processors cannot work with them. However, they are used for transmissions, as internal 

codes, and for composed numbers. They are also fundamental for floating point numbers en-
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coded according to the IEEE 754 standard used for types float, double and extended by over-

whelming majority of modern computers. IEEE 754 stores mantissa in straight code and ex-

ponent in K-excess code
13

. 

3.4 Hexadecimal notation 
Hexadecimal notation is a shorthand way of writing binary 

strings. Each 4 bits are encoded as 4-bit unsigned binary. To 

maintain single character representation for each group, values 

from 10 to 15 are replaced by letters from A to F.  

Example 1: Write binary string 10100111 in hex. notation. 

Solution: We divide the string into 4-bit groups 1010 0111, and 

we encode each group, so the result A7 

Example 2: Write 11100110101011 in hexadecimal notation: 

Solution: First, we divide the string into 4-bit groups from its 

LSB to 11 1001 1010 1011.  We extend the leftmost 

group with 2 bit to 4 bits 0011 1001 1010 1011. We 

encode them as 39AB 

Example 3: Convert hexadecimal notation 1F to 6-bit binary 

string. 

Solution: By direct conversion, we obtain 0001 1111. We take 

the lower 6 bits, so 01 1111  

 

Binary 

string 
Char 

Unsigned 

value 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

1000 8 8 

1001 9 9 

1010 A 10 

1011 B 11 

1100 C 12 

1101 D 13 

1110 E 14 

1111 F 15 

The hexadecimal notation leads implicitly to the number of bit length divisible by 4, but it is 

possible to use it for other lengths if we add the bit length specification. 

3.4.1 Hexadecimal number 

Hexadecimal number means that the bit string written in hexadecimal notation is inter-

preted as an unsigned binary number. There are several different ways for writing such num-

bers. We show some of them for the values of A7 and 39AB from examples 1 and 2 above. 

a) 0A7H , 39ABH  Hexadecimal notation ends with the suffix H and if it begins with a let-

ter, we add prefix 0 to highlight the numeric value.  

b) 0xA7,  0x39AB We add prefix 0x in front of the number.  

c)  X"A7", X"39AB" Notation in VHDL language. 

d) 16#A7, 16#39AB Notation in PostScript language. 

..... and many other formats, see Wikipedia, keyword Hexadecimal 

In programming languages, however, a hexadecimal constant (literal) as can also be 

taken as a signed binary number, if it is assigned to a variable of a signed type. The situation 

is demonstrated on the following C ++ code compiled so that the variable int has 4 bytes.
14

 

                                                 
13

 With numbers IEEE 754, we usually do not calculate directly, but before arithmetic operations are de-

composed into mantissa and exponent, which are processed separately. Finally, the result is again composed. 

However, some operations can be performed directly with composed numbers. Saving mantissa in straight code 

allows quick arithmetic negation of a number, merely by changing one bit. You can also compare two IEEE 754 

number directly in composed form, i.e., as quickly as two integer numbers. 
14

 The size of int depends on a compiler. In 64-bit environment, it could be 8 bytes, i.e.  64 bits, but many 

compilers select here also 4 bytes, i.e. 32 bits, for backward compatibility of programs. 
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int intsize = sizeof(int); // intsize = 4 (byty) 
unsigned char uc = 0xFF; // uc = 255 
char sc = 0xFF; // sc = -1 
unsigned short int usi = 0xFFFF; // usi = 65535 
short int ssi = 0xFFFF; // ssi = -1 
unsigned int ui = 0xFFFFFFFF; // ui = 4294967295 
int si = 0xFFFFFFFF; // si = -1 

As the example shows, 0xFF constant may not always be equal to 255, see variable sc. 

3.4.2  Numeral systems 

Hexadecimal (also base 16, or hex) numbers are often introduced as a positional numer-

al system with a radix, or base, of 16. However, such definition directly induces that numbers 

are unsigned binaries, so we have had so far avoided.   

         
                

   

   
    (3) 

The value of hex number x16=0xA7, we evaluate by (3) as the sum x16=10*16
1
+7*16

0
 = 167. 

From a mathematical point of view, we can select any integer greater than 1 as the radix. If 

we choose, for example, r = 10 then we get decimal numbers. If we denote the radix of a nu-

meral system as r, then the equation gives number xr  as:  

       
                   

   

   
      (4) 

The values ak are numbers, but we write them by single characters, as well as in hex notation. 

The circuits and computers prefer numbers with radixes equal to r=2
m

 because they allow fast 

conversions to binaries and efficient storage. The exponent m determines the length of a bit 

group coded by one character. The table below shows conventional systems: 

Name of number Base (radix) r Length of bit group   

Binary 2 1 

Octal 8 3 

Hexadecimal 16 4 

Base32 32 5 

Base64 nebo Radix64 64 6 

Decimal 10 - no possibility to convert by bit groups- 

Table 6 - Some conventional radixes for numeral systems 

In the following paragraphs, we briefly summarize yet unlisted codes. 

3.4.2.1 Octal numbers 

If we select r=8 in equation (4), then we obtain coding by 3-bit groups known as octal 

numeral system or oct for short. 

For example, hexadecimal number 0xA7, with decimal value 167, is encoded as 

unsigned binary 1010 0111 If we split it from the right side to 3-bit groups as 10 100 111 and 

we encode each group as an unsigned binary number, then obtain octal number 247. Suffix Q 

is sometimes appended, i.e. 247Q, to emphasize octal encoding. 

In the past, octals were widely used, mainly in telecommunications. Now, they are ap-

plied only rarely. In Unix versions, they remain in commands chown and chmod (abbreviation 

for change owner and change mode), whose arguments are octals (without suffixes Q). 
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3.4.2.2 Base32 and Base64 

If we select radix r=32, we encode 5-bit groups to Base32. If we take radix r=64, then 

we encode 6-bit groups to Base64. We frequently encounter the both encoding. They are suit-

able for efficient transmissions of long binary strings in text form, as encryptions keys. Acti-

vation keys of programs are also often encoded as Base32 numbers. 

Base32 and Base64 encoding and are not as transparent as hexadecimal numbers be-

cause they rarely represent numerical values according to the formula (4). Encoded bit groups 

with the length of 5, or respectively 6 bits, are not commensurable with the standard byte siz-

es of numbers, i.e., 1, 2, 4, or 8 bytes. If we encoded separate numbers that have byte sizes, 

we do not achieve efficient compression into text. Therefore, all numbers are often joined into 

one long binary chain, i.e. to one many-bit number that is encoded in a text string. After we 

decode the string to the original binary chain, we divide it into numbers. 

We divide very long binary chains to bit groups usually from the leftmost bit. Several 

code tables exist, put in place by manufacturers, so numbers ak from equation (4) can be rep-

resented by different symbols. According to a selected table, we write characters for values 

from 0 to 31 for Base32, respectively from 0 to 63 for Base64. The character tables are 

usually designed for avoiding possible confusion with similar symbols, such as the lowercase 

letter l and the numeral 1. Base32 only uses numbers and letters, and it is case insensitive. 

Base64 needs more characters, so it si case sensitive. An uppercase letter has a different value 

than its lowercase counterpart.   

To the end of Base32 and Base64 codes, the padding is appended. The sequence of '=' 

indicates that the length of the last group and it is also useful as an end mark when the text 

result is stored in more lines.  See Wikipedia, keys Base32 and Base64. 

The comparison of some possible encoding to Base32 and Base64 with other codes: 

Decimal number 1234567890 

encoded as encoded to text string 

 decimal 1234567890 

 (un)signed binary 0100 1001 1001 0110 0000 0010 1101 0010 

 hexadecimal 499602D2 

 octal 11145401322 

 its bit groups 01 001 001 100 101 100 000 001 011 010 010 

as unsigned binary encoded in 

 Base32 RFC4648 JGLAFUQ= 

 its bit groups 01001 00110 01011 00000 00101 10100 10+000 

 Base64 original SZYC0g== 

 - 010010 011001 011000 000010 110100 10+0000 

3.5 BCD - Binary Coded Decimal 
BCD encoding represents the oldest used method. Each its digit is encoded as a single 

unsigned binary number and stored in four bits, so we directly write a decimal number. For 

example, we store decimal 35 as number 0011 0101 in BCD. 
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Figure 25 - BCD číslo 35 

BCD coding offers the advantage of good readability for large binary numbers because we 

can directly see a decimal number from its binary encoding. Display devices preferably use 

BCD. For example, to display a number on the 7-segment display, we must first convert it to 

BCD, see Figure 25. Similarly, when we print numbers by calling printf () the function, then it 

first converts numbers to BCDs and then, it writes characters of digits.  

BCD contains 4-bit groups, as well as hexadecimal numbers, but unlike them, BCD 

does not use the whole range of 4-bit unsigned binaries from 0 to 15, but only the values from 

0 to 9. If some 4-bit group of BCD contains a value that is outside this range, then it is not 

valid BCD number. When we encode a decimal number 9876543210 to BCD number, we 

obtain 4 * 10 bytes, i.e. 40 bits:  

Decimal number 9 8 7 6 5 4 3 2 1 0 

BCD digit 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 

The earlier computers used BCD numbers directly, precisely for their easy readability by hu-

man operators, such as the first electronic computer, ENIAC (Electronic Numerical Integrator 

and Computer) made in 1946, see Figure 26 [photograph from Wikipedia, key ENIAC]. 

 
Figure 26 - ENIAC Electronic Numerical Integrator and Computer 

Regarding storing BCD numbers in computer memories, there are two formats of BCD num-

bers. Unpacked BCD format stores each BCD digit in a single separate byte, and it is suitable 

for numerical operations. Packed BCD format stores in one byte two BCD digits and it is effi-
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cient for storing numbers. Microprocessors can usually perform arithmetic operations only 

with unpacked BCD numbers. 

Today, the direct counting with BCD numbers is performed only rarely, because it is 

about 2 to 3 times slower than binary numbers and it also requires more accesses into memo-

ries. However, BCD is necessary for each printing of numbers. 

We can convert a binary number to BCD of course by divisions by ten and by counting 

remainders, but such approach is unnecessarily slow. There is a much faster method based on 

the left shifts, previously mentioned as Horner scheme; see Method 2 in Chapter 3.1.3, begin-

ning on page 24. Moreover, the method can directly convert packed BCD numbers, and it is 

suitable for parallel realization in hardware. For it, we need only the operation of BCD multi-

plication by 2. 

3.5.1 How to multiply BCD by 2  

When a BCD number contains digits from 0 to 4, then we multiply them by 2 as unsigned 

binaries by the logical left shift. The values of the result will be in the valid BCD range from 

0 to 8. The problem arises for BCD digits in the range from 5 to 9. After we multiply them by 

2, we obtain the results from 10 to 18 that are outside of the valid BCD range. 

We can correct them by the following way. Before we perform the left shift of a BCD, 

we add 3 to all BCD digits that have values from 5 to 9.  

Why are we adding 3? It is a half of the length range that is missing in BCD coding. 

BCD encoding utilizes only the values 0 to 9 of the full range of 4-bit unsigned binaries (i.e. 

from 0 to 15). BCD omits its 6 values from 10 to 15. Therefore, before we left shift a BCD, 

we add +3 to its BCD digits that are greater than 4 as their corrections. Then, these corrected 

digits will skip the missing 6 values during the following shift left (multiplication by 2). Thus, 

we obtain the required result. 

 

BCD Correction Before left shift After left shift 

0000 0000 [0 | 0]  0000 0000 [0 | 0] 0000 0000 [0 | 0] 

0000 0001 [0 | 1]  0000 0001 [0 | 1] 0000 0010 [0 | 2] 

0000 0010 [0 | 2]  0000 0010 [0 | 2] 0000 0100 [0 | 4] 

0000 0011 [0 | 3]  0000 0011 [0 | 3] 0000 0110 [0 | 6] 

0000 0100 [0 | 4]  0000 0100 [0 | 4] 0001 0100 [0 | 8] 

0000 0101 [0 | 5] +[0 | 3] 0000 1000 [0 | 8] 0001 0000 [1 | 0] 

0000 0110 [0 | 6] +[0 | 3] 0000 1001 [0 | 9] 0001 0010 [1 | 2] 

0000 0110 [0 | 7] +[0 | 3] 0000 1010 [0 | 10] 0001 0100 [1 | 4] 

0000 0110 [0 | 8] +[0 | 3] 0000 1011 [0 | 11] 0001 0110 [1 | 6] 

0000 0110 [0 | 9] +[0 | 3] 0000 1100 [0 | 12] 0001 1000 [1 | 8] 

The correction can cause the temporary creation of invalid values for BCD digits, like 1010, 

1011 and 1100 in the last rows of the table, but these are immediately converted by the logical 

left shift to valid BCD values. 
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3.5.2 Conversion of unsigned binary to BCD 

We explain the algorithm by the example of converting 8-bit unsigned binary 01110011, hex 

0x73, with decimal value 115.  

Steps: 

a) At the beginning of each step, we first examine all individual 4-bit BCD digits. If a 

digit is greater than the number 4 (0100), then we add binary 3 (0011) to it. We per-

form these additions separately for each corrected BCD digit, i.e. as the operation 

with an isolated 4-bit unsigned binary. Intermediate results of the correction can be 

over 9 (1001) but such invalid values are automatically corrected in the next step b). 

b)  Then, we perform the logical left shift of entire BCD number joined with converted 

unsigned binary, i.e. we shift the both numbers as a single continuous chain of bits.   

For 8-bit unsigned binary, we repeat the steps a) and b) by 8 times. 

Operation packed BCD number 
Unsigned 

binary 

Initialization [ 0 | 0 | 0 ]    0000 0000 0000 01110011 

after 1
st
 joined left shift BCD and binary [ 0 |0 | 0 ]    0000 0000 0000 11100110  

after 2
nd

 joined left shift BCD and binary [ 0 |0 | 1 ]    0000 0000 0001 11001100  

after 3
rd

 
t
 joined left shift BCD and binary [ 0 | 0 | 3 ]    0000 0000 0011 10011000  

after 4
th

 
t
 joined left shift BCD and binary [ 0 | 0 | 7 ] 0000 0000 0111 00110000  

BCD digit 0111> 0100    +[ 0 | 0 | 3 ] +0000 0000 0011  

result of the correction [ 0 | 0 | 10 ]  0000 0000 1010 00110000  

after 5
th

 joined left shift BCD and binary [ 0 | 1 | 4 ] 0000 0001 0100 01100000 

after 6
th

 joined left shift BCD and binary [ 0 | 2 | 8 ] 0000 0010 1000 11000000 

BCD digit 1000> 0100→ correction    +[ 0 | 0 | 3 ] +0000 0000 0011  

result of the correction [ 0 | 2 | 11 ]  0000 0010 1011 11000000 

after 7
th

 joined left shift BCD and binary [ 0 | 5 | 7 ] 0000 0101 0111 10000000  

BCD digits 0101 a 0111>= 0100→ correction    +[ 0 | 3 | 3 ] +0000 0011 0011  

result of the correction [ 0 | 8 | 10 ] 0000 1000 1010 10000000  

after 8
th

 joined left shift BCD and binary [ 1 | 1 | 5 ] 0001 0001 0101 00000000  

the end - BCD contains the final result     

The algorithm is relatively straightforward and mechanical, and we can extend it to longer 

binaries. Unfortunately, in higher programming languages, we cannot easily shift several 

joined numbers. Machine code instructions allow these operations because ALUs store a bit 

that falls out during a shift into processor Carry flag. The Carry can be immediately used as 

the input for the next shift, so we can easily shift arbitrarily long chain of numbers.  

In C language or other similar high-level programming languages, shifts are implement-

ed only partially without the possibility of shifting multiple variables. Processors can perform, 

but we cannot simply write. 

The most efficient way for their programming leads through the placement of BCD and 

unsigned binary into a single unsigned int or unsigned long type, according to the required 

length. Then, we have a little bit complicated tests of BCD digits, but our program is still 

more efficient than a code with shifts of separated variables. 
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typedef unsigned char byte; 
struct BCD_t { byte digit[3]; }; 

void byte2bcd(byte bin, BCD_t & bcd) 
{ 

// 3 BCD digits are stored in bits 19 down to 8; binary input bin in bits 7 down to 0 

unsigned int BCD_plus_bin = bin; 

for (int i = 1; i <= 8; i++) // counter of bit shifts 
{ 
 //For 8bits input bin, the correction is only performed for lower BCD digits [1] and [0], 

 // because the upper BCD digit [2] can contain only values from 0 to 2  

  if ((BCD_plus_bin & 0xF00) > 0x400) BCD_plus_bin += 0x300; 
 if ((BCD_plus_bin & 0xF000) > 0x4000) BCD_plus_bin += 0x3000; 
 BCD_plus_bin <<= 1;  // shift left together BDC + bin 

} 
// unpacking BCD digits to obtain result 

bcd.digit[0] = (BCD_plus_bin & 0xF00) >> 8; 
bcd.digit[1] = (BCD_plus_bin & 0xF000) >> 12; 
bcd.digit[2] = (BCD_plus_bin & 0xF0000) >> 16; 

} 
int main(int argc, char * argv[]) // a test of byte2bcd function 
{ 
 byte VSTUP = 0x73; // bin=01110011 
 BCD_t bcd; 

 byte2bcd(VSTUP, bcd); 

 for (int j = 2; j >= 0; j--) // direct print of characters 
  putc((char)(bcd.digit[j] + '0'), stdout);   

 putc('\n',stdout); // end of line 

 return 0; 
} 

Note 1: The code can run faster because the corrections for the lowest BCD digit [0] 

occur only when i> = 4, and for the following BCD digit [1] when i> = 7. 

Note 2: We explain the converting a number to character by adding '0' in the next sec-

tion about ASCII characters, in paragraph "Important properties of ASCII". 

3.6 Character encoding standard ASCII 
The character encoding standard ASCII (American Standard Code for Information In-

terchange) was developed in 1963, then, it was revised. Its most recent update during 1986 is 

utilized until today. It is also incorporated into the newer codes, as Unicode or UTF8, which 

assigned the same numeral values to characters defined in ASCII for backward compatibility.  

ASCII contains 128 valid characters with decimal values from 0 to 127, see Table 7 on 

page 43. We can store this range into 8-bit unsigned or signed binary. 

Example: Covert text "Hello, Logic!" to ASCII bytes. 

Solution: We find out text symbols in ASCII table and write down their ASCII codes, e.g. as: 

Symbol H e l l o ,   L o g i c ! 
Hexacimal 48 65 6c 6c 6f 2c 20 4c 6f 67 69 63 21 

Decimal value 72 101 108 108 111 44 32 76 111 103 105 99 33 
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Table 7 - ASCII table 

ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol 

0 0x0 NUL 32 0x20 (mezera) 64 0x40 @ 96 0x60 ` 

1 0x1 SOH 33 0x21 ! 65 0x41 A 97 0x61 a 

2 0x2 STX 34 0x22 " 66 0x42 B 98 0x62 b 

3 0x3 ETX 35 0x23 # 67 0x43 C 99 0x63 c 

4 0x4 EOT 36 0x24 $ 68 0x44 D 100 0x64 d 

5 0x5 ENQ 37 0x25 % 69 0x45 E 101 0x65 e 

6 0x6 ACK 38 0x26 & 70 0x46 F 102 0x66 f 

7 0x7 \a  BEL 39 0x27 ' 71 0x47 G 103 0x67 g 

8 0x8 \b  BS 40 0x28 ( 72 0x48 H 104 0x68 h 

9 0x9 \t  TAB 41 0x29 ) 73 0x49 I 105 0x69 i 

10 0xA \n   LF 42 0x2A * 74 0x4A J 106 0x6A j 

11 0xB \v   VT 43 0x2B + 75 0x4B K 107 0x6B k 

12 0xC \f    FF 44 0x2C , 76 0x4C L 108 0x6C l 

13 0xD \r   CR 45 0x2D - 77 0x4D M 109 0x6D m 

14 0xE SO 46 0x2E . 78 0x4E N 110 0x6E n 

15 0xF SI 47 0x2F / 79 0x4F O 111 0x6F o 

16 0x10 DLE 48 0x30 0 80 0x50 P 112 0x70 p 

17 0x11 DC1 49 0x31 1 81 0x51 Q 113 0x71 q 

18 0x12 DC2 50 0x32 2 82 0x52 R 114 0x72 r 

19 0x13 DC3 51 0x33 3 83 0x53 S 115 0x73 s 

20 0x14 DC4 52 0x34 4 84 0x54 T 116 0x74 t 

21 0x15 NAK 53 0x35 5 85 0x55 U 117 0x75 u 

22 0x16 SYN 54 0x36 6 86 0x56 V 118 0x76 v 

23 0x17 ETB 55 0x37 7 87 0x57 W 119 0x77 w 

24 0x18 CAN 56 0x38 8 88 0x58 X 120 0x78 x 

25 0x19 EM 57 0x39 9 89 0x59 Y 121 0x79 y 

26 0x1A SUB 58 0x3A : 90 0x5A Z 122 0x7A z 

27 0x1B ESC 59 0x3B ; 91 0x5B [ 123 0x7B { 

28 0x1C FS 60 0x3C < 92 0x5C \ 124 0x7C | 

29 0x1D GS 61 0x3D = 93 0x5D ] 125 0x7D } 

30 0x1E RS 62 0x3E > 94 0x5E ^ 126 0x7E ~ 

31 0x1F US 63 0x3F ? 95 0x5F _ 127 0x7F   
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Important properties of ASCII 

 Control characters - The character with codes from 0 to 31 are reserved for controlling 

devices, like printers or teletypewriters. Language C contains escape code for the main 

control characters with values from 7 to 13 frequently used until today. In C, the es-

cape codes begin by a backslash.  Table 7 emphasizes them by red color. We mention 

here only BS - backspace ('\b'), TAB - tabulator ('\t'),  LF - linefeed ('\n'), and CR - 

carriage return - go to the beginning of a line of text ('\r'). We can find the complete 

overview of control characters on Wikipedia, under ASCII. 

 Digits 0-9 have decimal codes from 48 to 57 (hexadecimal from 0x30 to 0x39). There-

fore, we can easily convert between a digit and its numerical value by subtracting or 

adding 48 (0x30), which is the ASCII value of the character '0'. 

 Letters are stored in two contiguous blocks in alphabetical order. Uppercase letters oc-

cupy positions from 65 to 90 (0x41 to 0x5A) and lowercase from 97 to 122 (0x61 to 

0x7A), so we can easily test whether a character is a letter and sorted them alphabeti-

cally. 

 Lowercase and uppercase character codes are always shifted to each other about 32 

decimal, hexadecimal 0x20, so that the conversions between uppercase and lowercase 

letters are fast, we just add, respectively subtract, 32 (0x20) from the value of the 

character code.  

3.6.1 Extended ASCII 

Basic ASCII uses 7 bits, and it ends at 127 (0x7f). 8-bit unsigned binary has its maximum 

value 255 (0xFF). The values from 0x80 to 0xFF had been later used for extending ASCII 

(extended ASCII) with national characters, mainly various accented characters. 

 
Figure 27 - Principle of extended ASCII 

Figure 27 demonstrates the principle of the extension. While the lower decimal values 

from 0 to 127 remains constant, defined by the ASCII standard, so the upper half from 128 to 

255 changed according to national needs.  

Many different extending coding options exist. IBM OEM specification contains 81 of 

them. IANA (Internet Assigned Numbers Authority) has registered 257 of them, and it still far 
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did not include all code pages used. For example, it does not contain code page 895 (Brothers 

Kamenický encoding) formerly very popular in the Czech Republic.  

If we did not know used code page, we could encounter countless compatibility issues. 

However, extended ASCII is still used until today because it has a significant advantage of 

storing each symbol in 1 byte. 

In language C, if we work with extended ASCII characters, we have to remember that 

the extension code page uses values from 128 to 255 (from 0x80 to 0xFF). These are signed 

8-bit number from -128 to -1 because C language takes char type just assigned char type 

(signed is here the default), i.e., as an 8-bit signed binary number. 

Very frequent mistake is the skipping whitespaces characters with values 0x8 from 0x20 

by their comparing with character ' ' = 0x20.  

The following program was compiled in v C++, where sizeof(char)=1 (1 byte): 

 char * line = " \n\t à la mode"; 
 // wrong program for skipping of whitespaces 
 int i=0; while (line[i]!=0 && line[i] <= ' ') i++; 
 char c = line[i]; // c='l' 

The program jumped over newline character '\ n' (0xA) and tabulator '\ t' (0x9), but it also 

skipped accented character, because it has negative values in an extended ASCII table. 

We correct the code above by using unsigned char types. The, accented characters from 

0x80 to 0xFF range in the extended ASCII are now converted to decimal values of 128 to 

255, so that only whitespaces are less than or equal to space character ' '. 

 unsigned char * line = (unsigned char*)" \n\t à la mode"; 
 int i=0; while (line[i]!=0 && line[i] <= ' ') i++; 
 char c = line[i]; // c='à' 

In programs, extended ASCII coding is now usually replaced by Unicode. Its basic coding 

plane has 16-bit characters. All Unicode planes contain codes from 0 to 0x10ffff that allow 

storing all the world's national characters including historic scripts and the most of symbols. 

To values 0 to 0x7f, Unicode assigns the same characters as ASCII. 

For storing texts and websites, it is increasingly utilized UTF-8 (Unicode Transfor-

mation Format) that has maximum compatibility with ASCII, because its character values 

from 0 to 0x7f codes are identical to ASCII. UTF8 utilizes codes from 0x80 to 0xFF for the 

indication of the beginnings of more byte sequence of Unicode characters. Their length can be 

up to 6 bytes, but UTF8 modern standard RFC 3629 limits sequence to 4 bytes. 

The above program that skips whitespaces will not be simplified if we use Unicode type 

characters, for example, C++ language type wchar_t. The opposite is valid. In Unicode, we 

must check not only 6 white characters (less than or equal space ' ' in ASCII), but we should 

add further tests recognizing at least 19 new characters
15

  added to Unicode for different typo-

graphic spacings and line spacings. Many simple programs for processing texts freely apply 

Unicode, but they ignore its additional characters and silently ☺ assume that input texts do 

not contain them. 

In any case, ASCII remains the main encoding for hardware and small display devices. 

                                                 
15

 Totally, Unicode adds 25 new whitespaces, but 6 of them are rarely used. We can find complete list of 

whitespaces on Wikipedia, key "Whitespace character".  
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3.7 How much is 1000? 
We have begun Chapter 3 by the following joke: 

After a car accident, a programmer signed me the compensation of 1000 €. 

He paid me ten euros that he gave me two euros extra. 

Thus, how much it is 1000 in different numeral systems? Everything depends on used encod-

ing :-) 

We can convert four digit text "1000" to decimal number: 

 = -8  from 4-bit binary signed,  

 = -0 from sign-magnitude, 

 = 8 from unsigned binary or signed binary longer than 4 bits,  

 = 512 from octal number,  

 = 1000, if we take the digits are decimal number, 

 = 4096 from hexadecimal number, 

 = to an arbitrary integer from K-excess code according to its K offset value. 
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3.8 Test from knowledge of Chapter 3  
Try to answer 4 questions from memory, i.e., without any aids. The correct solution is in the 

appendix. 

Question 1 - Fill in missing values in tables. 

 8-bit unsigned binary BCD number 

Decimal number Binary Hexadecimal Binary Hexadecimal 

100 0110 0100 64 0001 0000 0000 100 

150     

50     

300     

 

 

Question 2 - Consider the operands written as decimal numbers. Fill decimal values of the 

results of arithmetic additions and subtractions, if the numbers are stored in given format. 

Format of binary 

number 

Length in bits Operation with decimal 

values 

gives the result with 

decimal value 

unsigned 8 100+200= 44 

unsigned 10 100+200= 300 

unsigned 8 200+200=  

unsigned 9 200+200=  

unsigned 8 127+1=  

signed 8 127+1=  

signed: 8 100-150=  

signed: 12 100-150=  

Question 3 - Consider 8-bit binary operands. Write the results of the operations: 

string (vector) of 

bits  

The left shift by 1 bit The right shift by 1 bit 

arithmetic logical arithmetic logical 

1000 0001 0000 0010    

1111 1111     

0101 0101     

1010 1010     

 

Question 4 - What are the final values of iresult and cresult of the program in C language? 

 char c1 = 'A'; 
 char c2 = 'b'; 
 int iresult = c2 - c1;     //  iresult =.............. 
 char cresult = '0' + 5;    //  cresult =............... 

 10-bit signed binary Straight binary - sign-magnitude 

Decimal number Binary Hexadecimal Binary Hexadecimal 

-100 11 1001 1100 39C 10 0110 0100 264 

-10     

 11 1111 1110    

  200   

   10 0000 0100  

511     
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4 Appendix 

4.1 Alphabetical list of used terms and abbreviations 
ALU Arithmetic Logic Unit - ALU processor is an essential component of the processor 

that performs all arithmetic and logical operations. 

ASCII  American Standard Code for Information Interchange - coding of characters, see 

Chapter 3.6 on page 42. 

BCD Binary Coded Decimal - encoding of a decimal number for good comprehensibil-

ity of human and easy visualization, see Chapter 3.5 on page 38. 

biased representation - the other name of Excess-K encoding of numbers, see Chapter 3.6.1 

on page 44. 

Borrow it means borrowing a bit from higher order during arithmetic overflow in the 

direction down, see Chapter 3.1.5 on page 26. However, processors do not usually 

distinguish the direction of overflow and Carry denotes the both direction.  

Carry arithmetic overflow of binary number range in the direction up, see Chapter 3.1.5 

on page 26. However, processors do not usually distinguish the direction of over-

flow and Carry denotes the both directions, and it is the main status flags generat-

ed by ALUs of processors. 

Excess-K coding of numbers, see Chapter 3.1.5 on page 20. 

Extended ASCII - the extension of ASCII code, see Chapter 3.6.1 on page 44. 

logic gate  it was originally designated as an electronic logical element. Today, it often de-

notes the schematic symbol of a logic operation, see Chapter 2.7.2 on page 19.  

LSB  "least significant bit" or "right-most bit". LSB also means a byte order as "least 

significant byte".  We distinguish whether LSB refers to byte or bit from the con-

textual description, see Figure 17 on page 22. 

MSB "most significant bit" or "high-order bit". MSB also means a byte order as "most 

significant byte".  We distinguish whether MSB refers to byte or bit from the con-

textual description, see Figure 17 on page 22. 

offset binary - the other name for K-excess coding of numbers, see Chapter 3.3 on page 35. 

overflow the term refers to arithmetic overflow that occurs when the result is outside of a 

range of used binary numbers. In processors, this term mainly denotes overflow 

flag that is related to arithmetic overflow with signed binaries, and it means that 

the result of the operation is meaningless - as a negative result of the addition of 

two positive numbers.  

straight binary -  coding of numbers, see Chapter 3.6.1 on page 44. 

sign–magnitude - the other name of straight binary coding of numbers,  see Chapter 3.6.1 on 

page 44. 

signed binary  - the abbreviation for the binary coding of signed integers in two's comple-

ment, see Chapter 3.2 on page 28. 

unsigned binary - the abbreviation for the binary coding of positive integers, see Chapter 3.1 

on page 23. 
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4.2 Solution of test from Chapter 2 
The solution is related to the test on page 21. 

Question 1: Fill unfinished truth table logic functions:: 

x3 x2 x1 AND(x1,x2,x3) OR(x1,x2,x3) NAND(x1,x2,x3) NOR(x1,x2,x3) 

0 0 0 0 0 1 1 

0 0 1 0  1 1 0  

0 1 0 0 1 1 0 

0 1 1 0 1 1 0 

1 0 0 0 1 1 0 

1 0 1 0 1 1 0 

1 1 0 0 1 1 0 

1 1 1 1 1 0 0 

 

x2 x1 XOR(x1,x2) EQU(x1,x2) 

1 0 1 0 

1 1 0 1 

0 0 0 1 

0 1 1 0 

Question 2: Rewrite the table left as Karnaugh map. 

x1 x0 y1 y0 X_LESS_Y 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 - 1 

0 1 0 - 0 

0 1 1 - 1 

1 0 0 - 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 - - 0 
 

 

Question 3: Write the logical expression that is realized by the following logic diagram: 

 F(X,Y,Z) = (X xor not Y) or not (Y and Z) 

Question 4: Draw the logical diagram of the following logic function: 

G(X,Y,Z) =  not( (not X xor Y) and not (not Y or Z) )  
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4.3 Solution of test from Chapter 3 
The solution is related to test on page 47. 

Question 1 - Fill in missing values in tables. 

 8-bit unsigned binary BCD číslo 

Decimal number Binary Hexadecimal Binary Hexadecimal 

100 0110 0100 64 0001 0000 0000 100 

150 1001 0110 96 0001 0101 0000 150 

50 0011 0010 32 0000 0101 0000 050 

300 impossible impossible 0011 0000 0000 300 

 

 

Question 2 - Consider the operands written as decimal numbers. Fill decimal values of the 

results of arithmetic additions and subtractions, if the numbers are stored in given format. 

Format of binary 

number 

Length in bits Operation with decimal 

values 

gives the result with 

decimal value 

unsigned 8 100+200= 44 

unsigned 10 100+200= 300 

unsigned 8 200+200= 144 

unsigned 9 200+200= 400 

unsigned 8 127+1= 128 

signed 8 127+1= -128 

signed: 
8 

100-150= 
impossible, 150 is out 

of 8-bit signed range 

signed: 12 100-150= -50 

Question 3 - Consider 8-bit binary operands. Write the results of operations: 

string (vector) of 

bits  

The left shift by 1 bit The right shift by 1 bit 

arithmetic logical arithmetic logical 

1000 0001 0000 0010 0000 0010 1100 0000 0100 0000 

1111 1111 1111 1110 1111 1110 1111 1111 0111 1111 

0101 0101 1010 1010 1010 1010 0010 1010 0010 1010 

1010 1010 0101 0100 0101 0100 1101 0101 0101 0101 

 

Question 4 - What are the final values of iresult and cresult of the program in C language? 

 char c1 = 'A'; 
 char c2 = 'b'; 
 int iresult = c2 - c1;     //  iresult = 33 (0x21) 
 char cresult = '0' + 5;    //  cresult = '5' 

 

 10-bit signed binary Straight binary - sign-magnitude 

Decimal number Binary Hexadecimal Binary Hexadecimal 

-100 11 1001 1100 39C 10 0110 0100 264 

-10 11 1111 0110 3F6 10 0000 1010 20A 

-2 11 1111 1110 3FE 10 0000 0010 202 

-512 10 0000 0000 200 out of the range out of the range 

-4 11 1111 1100 3FC 10 0000 0100 204 

511 01 1111 1111 1FF 01 1111 1111 1FF 
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