Selection from

Susta:Computer System Structures & John Loomis: Computer organization

& M.Mudawar:Computer Architecture & Assembly Language

Version: 1.0

Practical Exercise 2nd

ČVUT-FEL in Prague,

Two's-Complement Representation

With *k* bits, numbers in the range $[-2^{k-1}, 2^{k-1} - 1]$ represented. Negation is performed by inverting all bits and adding 1.

Overflow Conditions

Add two positive numbers to get a negative number or two negative numbers to get a positive number

Fixed-Point 2's-Complement Numbers

Schematic representation of 4-bit 2's-complement encoding for (1 + 3)-bit fixed-point numbers in the range [-1, +7/8].

Rotation (Cyclic Shift)

Mutliplication of signed numbers

Multiplication in Two's complement cannot be accomplished with

the standard technique since, as far as the machine itself is concerned, for Y[n]:

$$-Y = 0 - Y = 2^n - Y$$

since, when subtracting from zero, need to "borrow" from next column leftwards. Consider $X \times (-Y)$

Internal manipulation of -Y is as $2^n - Y$

Therefore $X \times (-Y) = X \times (2^n - Y) = 2^n \times X - X \times Y$,

it is correct as n-bit result, but it is wrong as 2*n bit result.

A standard product of two n-bit numbers is 2*n-bit number,

thus we must calculate the result as 2*n-bit numbers!

However as expected 2^{n-1} tresult should be $2^{2n} - (X \times Y)$

Mutliplication of signed numbers

Consider $(-X) \times (-Y)$

Internal manipulation of -X is as $2^n - X$ and -Y is as $2^n - Y$

Therefore $(-X) \times (-Y) = (2^n - X) \times (2^n - Y) = 2^{2n} - 2^n \times X - 2^n \times Y + X \times Y$,

The expected 2^{n-bit} result should be $2^{2n} + (X \times Y)$

We must calculate as 2*n-bit result and add a correction to obtain positive number.

Note: Because negative numbers have many bit 1, computers usually utilize special algorithms for negative sign number multiplications., e.g. Booth's multiplication algorithm to increase speed.

Signed Multiplication

Case 1: Positive Multiplier - we add as 8 bit numbers!

Case 2: Negative Multiplier

Multiplicand	11002	= -4		
Multiplier	× 1101 ₂	= -3		
Sign-extension	∫→11111100	-4	11111100	-4
	' →[11 10000	-16	11110000	-16
(+4<<3)	0010000	+32	11100000	-32
Product	10 00001100 ₂	= +12	10 11001100 =	-52

Unsigned Division

		10011 ₂	= 1	9	Quotient	
Divisor	1011 ₂) 11011001 ₂	= 2	17	Dividend	
		-1011				
		10		Tı	ry to see how big a	
		101		<u>e</u> 11	number can be	
		1010		dig	git of the quotient on	
		10100			each attempt	
Divid	end =	-1011				
Quotient × Divisor		1001			Binary division is	
+ Remainder		10011	10011		accomplished via	
217 = 19	× 11 + 8	-1011		5111	and Subtraction	
		10002	= 8		Remainder	

ANSI/IEEE Standard Floating-Point Format (IEEE 754)

Revision (IEEE 754R) is being considered by a committee

The two ANSI/IEEE standard floating-point formats.

Floating-Point Representation 1

- Convert the decimal number to binary:
 - $-228_{10} = 11100100_2 = 1.11001 \times 2^7$
- Fill in each field of the 32-bit number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

Sign	Exponent	Mantissa
0	00000111	111 0010 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating-Point Representation 2

- First bit of the mantissa is always 1:
 - $-228_{10} = 11100100_2 = 1.11001 \times 2^7$
- Thus, storing the most significant 1, also called the *implicit leading 1*, is redundant information.
- Instead, store just the fraction bits in the 23-bit field. The leading 1 is implied.

Floating-Point Representation 3

- *Biased exponent*: bias = 127 (01111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

 $127 + 7 = 134 = 0 \times 10000110_2$

• The IEEE 754 32-bit floating-point representation of 228₁₀

Normalized and denormalized numbers

If the exponent is between 1 and 254, a normal real number is represented.

If the exponent is 0:

- if fraction is 0, then value = 0.
- if fraction is not zero, it represents a denormalized number.

 $b_1\,b_2\,\ldots\,b_{23}$ represents 0. $b_1\,b_2\,\ldots\,b_{23}$ rather than $1.b_1b_2\,\ldots\,b_{23}$

Why? To reduce the chance of underflow.

Denormalized numbers

- No hidden 1
- Allows numbers very close to 0
- $E = 00...0 \rightarrow Different interpretation applies$
- Denormalization rule: number represented is (-1)^s×0.F×2⁻¹²⁶ (single-precision) (-1)^s×0.F×2⁻¹⁰²² (double-precision)
- Note: zeroes also follow this rule

Special-case numbers

• Zeroes:

• Infinities:

• Not a Number (NaN): E = 11...1; F != 00...0

Short and Long IEEE 754 Formats: Features

Some features of ANSI/IEEE standard floating-point formats

Feature	Single/Short	Double/Long	
Word width in bits	32	64	
Significand in bits	23 + 1 hidden	52 + 1 hidden	
Significand range	$[1, 2-2^{-23}]$	$[1, 2 - 2^{-52}]$	
Exponent bits	8	11	
Exponent bias	127	1023	
Zero (±0)	e + bias = 0, f = 0	e + bias = 0, f = 0	
Denormal	$e + bias = 0, f \neq 0$	$e + bias = 0, f \neq 0$	
	represents $\pm 0.f \times 2^{-126}$	represents $\pm 0.f \times 2^{-1022}$	
Infinity $(\pm \infty)$	e + bias = 255, f = 0	e + bias = 2047, f = 0	
Not-a-number (NaN)	$e + bias = 255, f \neq 0$	$e + bias = 2047, f \neq 0$	
Ordinary number	$e + bias \in [1, 254]$	$e + bias \in [1, 2046]$	
	$e \in [-126, 127]$	$e \in [-1022, 1023]$	
	represents $1 f \times 2^e$	represents $1 f \times 2^e$	
min	$2^{-126} \cong 1.2 \times 10^{-38}$	$2^{-1022} \cong 2.2 \times 10^{-308}$	
max	$\cong 2^{128} \cong 3.4 \times 10^{38}$	$\cong 2^{1024} \cong 1.8 \times 10^{308}$	