Selection from

Susta:Computer System Structures
& John Loomis: Computer organization
udawar:.Computer Architecture & Assembly Language

Version: 1.0

M Practical Exercise 2nd

CVUT-FEL in Prague,

Two’s-Complement Representation

With k bits, numbers in the range [-2k-1, 2k-1 — 1] represented.

Negation is performed by inverting all bits and adding 1.

\)
0000
1111 \ 0001 Turn x notches
counterclockwise

to add x

Turn 16 — y notches
counterclockwise to
add -y (subtract y)

Overflow Conditions

Add two positive numbers to get a negative number

or two negative numbers to get a positive number

Fixed-Point 2’s-Complement Numbers

Schematic representation of 4-bit 2’s-complement encoding for (1 +
3)-bit fixed-point numbers in the range [-1, +7/8].

Logical Shift Arithmetic Shift

[C<—b7 ---oommmeemm - bg=— O O R VA — bdq=— O

00— b7 ---—---m- bd——[d] Y — bd——[c

Mutliplication of signed numbers

Multiplication in Two's complement cannot be accomplished with
the standard technique since, as far as the machine itself is concerned, for Y[n]:
-Y =0-Y = 2"n-Y
since, when subtracting from zero, need to "borrow" from next column leftwards.
Consider X x (=Y)
Internal manipulation of =Y isas 2" -Y
Therefore X x (-Y) = Xx(2"-Y) = 2"x X = X XY,
It IS correct as n-bit result, but it is wrong as 2*n bit result.
A standard product of two n-bit numbers is 2*n-bit number,
thus we must calculate the result as 2*n-bit numbers!

However as expected 2*n-bit result should be 22" — (X x Y)

Mutliplication of signed numbers

Consider (-X) x (=Y)
Internal manipulation of -Xisas 2"- Xand -Yisas2"-Y
Therefore (-X) x (=Y) = (2"=-X)x (2"-Y) = 22 =-2"x X -2"x Y + X X Y,
The expected 2*n-bit result should be 22" + (X x Y)

We must calculate as 2*n-bit result and add a correction to obtain positive

number.

Note: Because negative numbers have many bit 1, computers usually utilize
special algorithms for negative sign number multiplications., e.g. Booth's

multiplication algorithm to increase speed.

Signed Multiplication

* Case 1: Positive Multiplier - we add as 8 bit numbers!

Multiplicand 1100, = -4
Multiplier X 0101, = +5
. , 11111100
Sign-extension { -
11110000
Product 11101100, = -20
s Case 2: Negative Multiplier
Multiplicand 1100, = -4
Multiplier X 1101, = -3
Sign-extension { 11111100 -4
11110000 -16
(+4<<3) 00100000 +32
Product 10100001100, = +12

11111100 -4
11110000 -16
11100000 -32
10/11001100 = -52

Unsigned Division

10011,

19 Quotient

Divisor 1011,) 11011001,

-1011; 11
10}
101; |
1010 |
10100

Dividend =
Quotient x Divisor
+ Remainder
217=19x11+8

-1011

1001
10011
1011

1000,

217 Dividend

Try to see how big a
number can be
subtracted, creating a
digit of the quotient on
each attempt

Binary division is
accomplished via
shifting and subtraction

8

Remainder

([CTETERSTTETTEAN

S

S

/

ANSI/IEEE Standard Floating-Point Format (IEEE 754)

Revision (IEEE 754R) is being considered by a committee

Short exponent range is =127 to 128
but the two extreme values
are reserved for special operands
(similarly for the long format)

Short (32-bit) format

_1,8bits, | 23 bits for fractional part L
“ | bias =127) (plus hidden 1 in integer part) \\\
| -126 to 127, T
| \ -~
| \ \\\‘
igni Exponent \‘ Significand R
' 11bits,) el
_ | bias =1023, \ 52 bits for fractional part Tese
1 1-1022 to 1023 (plus hidden 1 in integer part)

Long (64 -bit) format

The two ANSI/IEEE standard floating-point formats.

Floating-Point Representation 1

e Convert the decimal number to binary:

— 228,,=11100100, = 1.11001 x 2’

e Fillin each field of the 32-bit number:
— The sign bit is positive (0)
— The 8 exponent bits represent the value 7

— The remaining 23 bits are the mantissa

1 bit 8 bits 23 bits

0 00000111 111 0010 0000 0000 0000 0000

Sign Exponent Mantissa

Floating-Point Representation 2

e First bit of the mantissa is always 1:
- 228,,=11100100, = 1.11001 X 27

e Thus, storing the most significant 1, also called the implicit leading 1, is
redundant information.

e Instead, store just the fraction bits in the 23-bit field. The leading 1 is implied.

1 bit 8 bits 23 bits

0| 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

Floating-Point Representation 3

e Biased exponent: bias =127 (01111111,)
— Biased exponent = bias + exponent
— Exponent of 7 is stored as:

127 +7 =134 = 0x10000110,

e The IEEE 754 32-bit floating-point representation of 228,

1 bit 8 bits 23 bits
0| 10000110 110 0100 0000 0000 0000 0000
Sign Biased Fraction

Exponent

Normalized and denormalized numbers

If the exponent is between 1 and 254, a normal real
number Is represented.

If the exponent is O:
o If fraction is O, then value = 0.

o if fraction is not zero, it represents a denormalized
number.

b, b, ... b,;represents 0. b, b, ... b,; rather than
1-b1b2 = n b23

Why? To reduce the chance of underflow.

Denormalized numbers

No hidden 1
Allows numbers very close to 0
E = 00...0 = Different interpretation applies

Denormalization rule: number represented is
(-1)°%0.F%2-126 (single-precision)
(-1)°%0.Fx%2-1022 (double-precision)

Note: zeroes also follow this rule

Special-case numbers
* /eroes:

0| 00...0 00...0 = +0
1| 00...0 00...0 => -0

* |nfinities:
0| 11...1 00...0 =) +oo
1| 11...1 00...0 = _oo

* Not a Number (NaN): E=11...1; F = 00...0

1 11...1 F!1=00...0

Short and Long IEEE 754 Formats: Features

Some features of ANSI/IEEE standard floating-point formats

Feature Single/Short Double/Long

Word width in bits 32 64

Significand in bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2 —2-23] [1, 2 —257]

Exponent bits 8 11

Exponent bias 127 1023

Zero (£0) e+bias=0,f=0 e+bias=0,f=0

Denormal e+bias=0,f£0 e+bias=0,f£0
represents £0.f x 2-126 represents £0.f x 2-1022

Infinity (£oo) e+ bias=255,f=0 e+ bias=2047,f=0

Not-a-number (NaN)

e +blas=255f#0

e +blas=2047,f#0

Ordinary number

e + bias € [1, 254]
e e [-126, 127]
represents 1.f x 2¢

e + bias € [1, 2046]
e € [-1022, 1023]
represents 1.f x 2¢

min

27126 ~12 %103

21022 = 2 2 x 10308

max

~ 2128 = 3.4 x 10%

~ 21024 ~ 1.8 x 10308

