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Two’s-Complement Representation 
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Turn x notches  
counterclockwise  

to add x 
 

Turn 16 – y notches  
counterclockwise to 
add –y (subtract y) 
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With k bits, numbers in the range [–2k–1, 2k–1 – 1] represented. 

Negation is performed by inverting all bits and adding 1. 



Add two positive numbers to get a negative number 
 
or two negative numbers to get a positive number 

5 + 3 = -9 -7 - 2 = +7 
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Overflow Conditions 
 



Fixed-Point 2’s-Complement Numbers 

Schematic representation of 4-bit 2’s-complement encoding for (1 + 

3)-bit fixed-point numbers in the range [–1, +7/8].  
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Logical Shift 

C 0 b7 ----------------- b0 

C b7 ----------------- b0 0 

Arithmetic Shift 

C 0 b7 ----------------- b0 

C b7 ----------------- b0 

Rotation (Cyclic Shift) 

b7 ----------------- b0 

b7 ----------------- b0 



Mutliplication of signed numbers 

Multiplication in Two's complement cannot be accomplished with  

the standard technique since, as far as the machine itself is concerned, for Y[n]: 

 −Y  = 0 − Y  =  2n − Y 

since, when subtracting from zero, need to "borrow" from next column leftwards. 

Consider X × (−Y) 

  Internal manipulation of −Y is as 2n − Y 

  Therefore X × (−Y)  =  X × (2n − Y)  =  2n × X − X × Y,  

      it is correct as n-bit result, but it is wrong as 2*n bit result.   

      A standard product of two n-bit numbers is 2*n-bit number,  

      thus we must calculate the result as 2*n-bit numbers! 

  However as expected 2*n-bit result should be 22n − (X × Y)  



Mutliplication of signed numbers 

Consider (-X) × (−Y) 

  Internal manipulation of −X is as 2n − X and  −Y is as 2n − Y   

  Therefore (-X) × (−Y)  =   (2n − X) × (2n − Y)  =   22n − 2n × X − 2n × Y + X × Y,  

  The expected 2*n-bit result should be 22n + (X × Y)  

We must calculate as 2*n-bit result and add a correction to obtain positive 

number. 

 

Note: Because negative numbers have many bit 1, computers usually utilize 

special algorithms for negative sign number multiplications., e.g. Booth's 

multiplication algorithm to increase speed.  

 

  



Signed Multiplication 
 Case 1: Positive Multiplier - we add as 8 bit numbers! 

 Multiplicand     11002 = -4 
 Multiplier ×   01012 = +5 

  11111100 

  11110000 

 Product 111011002 = -20 

 Case 2: Negative Multiplier 

 Multiplicand     11002 = -4 
 Multiplier ×   11012 = -3 

  11111100    -4       11111100   -4 

  11110000   -16       11110000  -16 

 (+4<<3)        00100000   +32       11100000  -32 

 Product     10|000011002 = +12     10|11001100 = -52 

Sign-extension 

Sign-extension 



Try to see how big a 

number can be 

subtracted, creating a 

digit of the quotient on 

each attempt 

              = 19 Quotient 

Divisor 10112  110110012 = 217 Dividend 

   -1011 

      10 

      101 

      1010 

      10100 

      -1011 

       1001 

       10011 

       -1011 

        10002 = 8 Remainder 

Unsigned Division 

Binary division is 

accomplished via 

shifting and subtraction 

Dividend =  

Quotient × Divisor 

+ Remainder 

217 = 19 × 11 + 8 

1 0 0 1 12 



ANSI/IEEE Standard Floating-Point Format (IEEE 754) 

The two ANSI/IEEE standard floating-point formats.  

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 –126 to 127 

 11 bits, 
 bias = 1023, 
 –1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

Short exponent range is –127 to 128 

but the two extreme values 

are reserved for special operands 

(similarly for the long format) 

Revision (IEEE 754R) is being considered by a committee 



 

 

 

Floating-Point Representation 1 
• Convert the decimal number to binary:  

– 22810 = 111001002 = 1.11001 × 27  

• Fill in each field of the 32-bit number: 

– The sign bit is positive (0) 

– The 8 exponent bits represent the value 7 

– The remaining 23 bits are the mantissa 

0    00000111     111 0010 0000 0000 0000 0000

Sign  Exponent Mantissa

1 bit         8 bits                     23 bits



 

 

 

Floating-Point Representation 2 
• First bit of the mantissa is always 1: 

– 22810 = 111001002 = 1.11001 × 27  

• Thus, storing the most significant 1, also called the implicit leading 1, is 
redundant information. 

• Instead, store just the fraction bits in the 23-bit field. The leading 1 is implied. 

0 00000111     110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits



 

 

 

Floating-Point Representation 3 
• Biased exponent: bias = 127 (011111112)   

– Biased exponent = bias + exponent 

– Exponent of 7 is stored as: 

   127 + 7 = 134 = 0x100001102 

• The IEEE 754 32-bit floating-point representation of 22810 

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

    110 0100 0000 0000 0000 0000



Normalized and denormalized numbers 

 
If the exponent is between 1 and 254, a normal real 

number is represented. 

 

If the exponent is 0: 
• if fraction is 0, then value = 0.  

 

• if fraction is not zero, it represents a denormalized 

number. 

    

 b1 b2 … b23 represents 0. b1 b2 … b23 rather than  

1.b1b2 … b23  

 

Why? To reduce the chance of underflow. 



Denormalized numbers 

• No hidden 1 

• Allows numbers very close to 0 

• E = 00…0  Different interpretation applies 

• Denormalization rule: number represented is  
(-1)S×0.F×2-126   (single-precision) 

(-1)S×0.F×2-1022  (double-precision) 

• Note: zeroes also follow this rule 

 

 



Special-case numbers 
• Zeroes: 

       +0 

       -0 

 

• Infinities: 

       +∞ 

       -∞ 

 

0 00…0 00…0 

1 00…0 00…0 

0 00…0 11…1 

1 00…0 11…1 

• Not a Number (NaN): E = 11…1; F != 00…0 

1 F != 00…0 11…1 



Short and Long IEEE 754 Formats: Features 

Some features of ANSI/IEEE standard floating-point formats  

Feature Single/Short Double/Long 

Word width in bits 32 64 

Significand in bits 23 + 1 hidden 52 + 1 hidden 

Significand range [1, 2 – 2–23] [1, 2 – 2–52] 

Exponent bits 8 11 

Exponent bias 127 1023 

Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0 

Denormal e + bias = 0, f ≠ 0 
represents ±0.f  2–126 

e + bias = 0, f ≠ 0 
represents ±0.f  2–1022 

Infinity (∞) e + bias = 255, f = 0 e + bias = 2047, f = 0 

Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0 

Ordinary number e + bias  [1, 254] 
e  [–126, 127] 
represents 1.f  2e  

e + bias  [1, 2046] 
e  [–1022, 1023] 
represents 1.f  2e 

min 2–126  1.2  10–38 2–1022  2.2  10–308 

max  2128  3.4  1038   21024  1.8  10308 


