
Selection from
Susta:Computer System Structures

& John Loomis: Computer organization

& M.Mudawar:Computer Architecture & Assembly Language

ČVUT-FEL in Prague,

Version: 1.0

Practical Exercise 2nd

Two’s-Complement Representation

0000
0001 1111

0010 1110

0011 1101

0100 1100

1000

0101 1011

0110 1010

0111 1001

+0
+1

+2

+3

+4

+5

+6

+7

–1

–5

–2

–3

–4

–8
–7

–6

+ _
0

 1

 2
 3

–1

 4
 5

 6
 7

–8

–7

Turn x notches
counterclockwise

to add x

Turn 16 – y notches
counterclockwise to
add –y (subtract y)

–5

–2
 –3

 –4

–6

With k bits, numbers in the range [–2k–1, 2k–1 – 1] represented.

Negation is performed by inverting all bits and adding 1.

Add two positive numbers to get a negative number

or two negative numbers to get a positive number

5 + 3 = -9 -7 - 2 = +7

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7 -8

-7

-6

-5

-4

-3

-2

-1

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7 -8

-7

-6

-5

-4

-3

-2

-1

Overflow Conditions

Fixed-Point 2’s-Complement Numbers

Schematic representation of 4-bit 2’s-complement encoding for (1 +

3)-bit fixed-point numbers in the range [–1, +7/8].

0.000
0.001 1.111

0.010 1.110

0.011 1.101

0.100 1.100

1.000

0.101 1.011

0.110 1.010

0.111 1.001

+0
+.125

+.25

+.375

+.5

+.625

+.75

+.875

–.125

–.625

–.25

–.375

–.5

–1
–.875

–.75

+ _

Logical Shift

C 0 b7 ----------------- b0

C b7 ----------------- b0 0

Arithmetic Shift

C 0 b7 ----------------- b0

C b7 ----------------- b0

Rotation (Cyclic Shift)

b7 ----------------- b0

b7 ----------------- b0

Mutliplication of signed numbers

Multiplication in Two's complement cannot be accomplished with

the standard technique since, as far as the machine itself is concerned, for Y[n]:

 −Y = 0 − Y = 2n − Y

since, when subtracting from zero, need to "borrow" from next column leftwards.

Consider X × (−Y)

 Internal manipulation of −Y is as 2n − Y

 Therefore X × (−Y) = X × (2n − Y) = 2n × X − X × Y,

 it is correct as n-bit result, but it is wrong as 2*n bit result.

 A standard product of two n-bit numbers is 2*n-bit number,

 thus we must calculate the result as 2*n-bit numbers!

 However as expected 2*n-bit result should be 22n − (X × Y)

Mutliplication of signed numbers

Consider (-X) × (−Y)

 Internal manipulation of −X is as 2n − X and −Y is as 2n − Y

 Therefore (-X) × (−Y) = (2n − X) × (2n − Y) = 22n − 2n × X − 2n × Y + X × Y,

 The expected 2*n-bit result should be 22n + (X × Y)

We must calculate as 2*n-bit result and add a correction to obtain positive

number.

Note: Because negative numbers have many bit 1, computers usually utilize

special algorithms for negative sign number multiplications., e.g. Booth's

multiplication algorithm to increase speed.

Signed Multiplication
 Case 1: Positive Multiplier - we add as 8 bit numbers!

 Multiplicand 11002 = -4
 Multiplier × 01012 = +5

 11111100

 11110000

 Product 111011002 = -20

 Case 2: Negative Multiplier

 Multiplicand 11002 = -4
 Multiplier × 11012 = -3

 11111100 -4 11111100 -4

 11110000 -16 11110000 -16

 (+4<<3) 00100000 +32 11100000 -32

 Product 10|000011002 = +12 10|11001100 = -52

Sign-extension

Sign-extension

Try to see how big a

number can be

subtracted, creating a

digit of the quotient on

each attempt

 = 19 Quotient

Divisor 10112 110110012 = 217 Dividend

 -1011

 10

 101

 1010

 10100

 -1011

 1001

 10011

 -1011

 10002 = 8 Remainder

Unsigned Division

Binary division is

accomplished via

shifting and subtraction

Dividend =

Quotient × Divisor

+ Remainder

217 = 19 × 11 + 8

1 0 0 1 12

ANSI/IEEE Standard Floating-Point Format (IEEE 754)

The two ANSI/IEEE standard floating-point formats.

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits,
 bias = 127,
 –126 to 127

 11 bits,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

Short exponent range is –127 to 128

but the two extreme values

are reserved for special operands

(similarly for the long format)

Revision (IEEE 754R) is being considered by a committee

Floating-Point Representation 1
• Convert the decimal number to binary:

– 22810 = 111001002 = 1.11001 × 27

• Fill in each field of the 32-bit number:

– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

0 00000111 111 0010 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Floating-Point Representation 2
• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• Thus, storing the most significant 1, also called the implicit leading 1, is
redundant information.

• Instead, store just the fraction bits in the 23-bit field. The leading 1 is implied.

0 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Floating-Point Representation 3
• Biased exponent: bias = 127 (011111112)

– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

 127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

 110 0100 0000 0000 0000 0000

Normalized and denormalized numbers

If the exponent is between 1 and 254, a normal real

number is represented.

If the exponent is 0:
• if fraction is 0, then value = 0.

• if fraction is not zero, it represents a denormalized

number.

 b1 b2 … b23 represents 0. b1 b2 … b23 rather than

1.b1b2 … b23

Why? To reduce the chance of underflow.

Denormalized numbers

• No hidden 1

• Allows numbers very close to 0

• E = 00…0  Different interpretation applies

• Denormalization rule: number represented is
(-1)S×0.F×2-126 (single-precision)

(-1)S×0.F×2-1022 (double-precision)

• Note: zeroes also follow this rule

Special-case numbers
• Zeroes:

  +0

  -0

• Infinities:

  +∞

  -∞

0 00…0 00…0

1 00…0 00…0

0 00…0 11…1

1 00…0 11…1

• Not a Number (NaN): E = 11…1; F != 00…0

1 F != 00…0 11…1

Short and Long IEEE 754 Formats: Features

Some features of ANSI/IEEE standard floating-point formats

Feature Single/Short Double/Long

Word width in bits 32 64

Significand in bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2 – 2–23] [1, 2 – 2–52]

Exponent bits 8 11

Exponent bias 127 1023

Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0

Denormal e + bias = 0, f ≠ 0
represents ±0.f  2–126

e + bias = 0, f ≠ 0
represents ±0.f  2–1022

Infinity (∞) e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0

Ordinary number e + bias  [1, 254]
e  [–126, 127]
represents 1.f  2e

e + bias  [1, 2046]
e  [–1022, 1023]
represents 1.f  2e

min 2–126  1.2  10–38 2–1022  2.2  10–308

max  2128  3.4  1038  21024  1.8  10308

