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Praque 6

fax : +420 224 918 646 and e-mail : susta@control.felk.cvut.cz

Abstract: Before verifying any program we must convert its source code into
some universal language acceptable by a chosen model checker. The presented
APLCTRANS algorithm is based on transfer sets that allows associative composition
of a subset of PLC programs to mathematical formulas. The formulas are usually
accepted by many checkers in some form and they can be also used for fast parallel
decomposition of a PLC program. APLCTRANS algorithm converts a program in
linear time in the size of source code at the most cases, though the converted program
has an exponential complexity of its execution time. . .
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1. INTRODUCTION

Programmable logical controllers (PLCs) have
proven their worth in countless industrial appli-
cations, but the safety of their software is an
unknown element in general and the formal val-
idation is needed. However, before verifying any
PLC program we must convert its code into some
universal language acceptable by chosen model
checker. Therefore we deal with developing the
conversion method that will come close as possible
to an ideal situation: enter a PLC program, propo-
sitions and read results. That means to create
algorithms allowing both effective conversions of
PLC programs and their decomposition to simple
blocks verifiable in reasonable time.

2. PROBLEM OF PLC COMPOSITION AND
RELATED WORKS

In most cases, PLCs (Programmable Logical Con-
trollers) operate in the cyclic mode depicted in
Figure 1, or they contain at least one program
executed cyclically (called continuous task).

Fig. 1. PLC — Programmable Logic Controller

PLC storage S incorporates three sets of variables:
Σ — finite set of PLC inputs, Ω — finite set of
PLC outputs, and V — internal memory, to which
we also add internal PLC registers — at least



boolean freg flag register 1 and the evaluation
stack Estack for freg values, so S = Σ ∪ Ω ∪ V ∪
{freg} ∪ Estack .

The cyclic behavior is suitable for verifying a PLC
program as an automaton by a model checker.
We only need to express the operations of PLC
program scan as the mapping δP : S → S.
Even if many publications concern PLCs and their
verification, few works include some conversion
methods. We have only found out algorithms
based on converting single rungs of the ladder
diagram.

The algorithm in (Rausch and Krogh 1998) con-
verts each rung 2 into separated module of SMV
(see (McMillan 1997)), which joins all modules
into its inner model. The similar approach was
found in (Rossi and Schnoebelen 2000), where it
was limited to one ladders diagram and it prohib-
ited using subroutines.

The method published in (Chambers et al. 2001)
is based on X-machine, which also emulates each
rung separately. It requires functional composi-
tions in a form f5(f4(f3(f2(f1(x))))) and gener-
ating trees of possible executional paths, which
can result in exponential complexity.

This paper presents new approach based on trans-
fer sets with associative composition property,
which allow composing PLC program from its
bottom to top. Whole program is represented by
mathematical formulas that may be used either
for modeling the program as one automaton or
for decomposing it into independent automata.

The transfer sets were described in (Šusta 2002b),
where is also presented the decomposition of the
final result with O(|S|3) complexity. This decom-
position algorithm itself was also published in
(Šusta 2002a), where is more detailed description
of PLCs.

In this paper, the transfer sets are defined by
another more comprehensive way.

3. TRANSFER SETS

In this section, we introduce the representation of
PLC instructions as the transfer sets of transfer
functions and we show that the set of all transfer
sets with the operation of their composition is a

1 freg is utilized by PLC for evaluating logical conditions
that affect the execution of instructions in ladder or func-
tion block diagrams.
2 In PLC terminology, a rung means a continuous part
of PLC instructions that correspond to assignment opera-

tions, which depend on same input conditions. Each rung is
depicted by one continuous graph, called rung, in a ladder
diagram diagram or it is described by one network block

in a statement list.

monoid. To simplify definitions for reducing the
size of this paper, we limit our considerations only
to boolean operations which are the simplest case
because they are consistent with ordinary boolean
functions. We will briefly outline the extension of
transfer sets to arithmetic operations and timers
at the end of the paper.

We denote an ordered finite set of integer num-
bers by I i.e., I

df
= {1, 2, . . . , |I|} , and the set

of all boolean variables by B. We will suppose
that a storage S of PLC contains only boolean
variables, i.e. S ⊂ B. Boolean transfer functions
have non-empty boolean expressions generated by
the grammar:

Gbexp ::= 1 | 0 | b | ¬Gbexp | (Gbexp1 ∧Gbexp2) |
(Gbexp1 ∨Gbexp2) | (Gbexp1 ≡ Gbexp2)

| (Gbexp1 6≡ Gbexp2) | (Gbexp) (1)

where b ∈ S, b ∈ B ranges over all boolean
variables, and 0 and 1 stand for logical constants.
We will suppose that 0 ≡ false and 1 ≡ true,
which is common practice in PLC programs. The
language generated by Gbexp will be denoted by
Bexp+ and its elements by bexp, i.e., bexp ∈
Bexp+. All elements can be primed or subscripted,
for example, bexp, bexp1, bexp2 all stands for three
(possible different) boolean expressions.

To manipulate with transfer functions without
cumulating too many symbols, we use special
notation for variables and their transfer functions.

Definition 1. Let x ∈ S be any variable in PLC
storage S and bexp ∈ Bexp+ be any expression
generated by grammar Gbexp then f̂(x) JbexpK
is called boolean transfer function for variable x
on storage S where x value is defined by the
assignment Jx := bexpKS, i.e., x equals to a value
of expression bexp evaluated with respect of to
momentary state of storage S.

Transfer functions of the type f̂(x) JxK, where
x ∈ S is any variable, are called canonical transfer
functions. The set of all boolean transfer functions
for variables in S is denoted by B̂(S).

To simplify orientation in the following para-
graphs, we will also hat-accent all further objects
related to transfer functions or transfer sets.

To distinguish among several transfer functions
for one identical variable, we mark such functions
by subscripts. Symbols f̂1(x) and f̂2(x) stand for
two (possibly different) transfer functions for x,
and f̂(x1) and f̂(x2) stand for transfer functions
for two (possibly different) variables x1 and x2.

Any f̂(x) JbexpK ∈ B̂(S) is fully specified by the
variable, which it belongs to, and by non-empty



expression bexp that represents its value, but the
function can be abbreviated according to our
momentary assumption about its structure. f̂(x)
stands for any transfer function for x variable
with any expression. On the contrary, f̂(x) Jx ∨ yK
specifies the transfer function corresponding to
the assignment Jx := x ∨ yKS.

Definition 2. Let f̂(x) JbexpK ∈ B̂(S) be a transfer
function then its domain is defined as the follow-
ing:

dom(f̂(x) JbexpK) df
= {bi ∈ B |

bi is used in bexp} (2)

The equality for boolean transfer function is de-
termined by belonging to the same variable and
their equivalent values in the meaning of boolean
equivalence.

Definition 3. Let f̂(x) JbexpxK ∈ B̂(S) and also
f̂(y)

q
bexpy

y
∈ B̂(S) be two boolean transfer

functions. We define the relation f̂(x) =̂ f̂(y)
as the concurrent satisfaction of two conditions
x = y and bexpx ≡ bexpy, otherwise f̂(x) ̂6= f̂(y).

Lemma 3.1. Binary relation =̂ on set B̂(S) is the
equivalence.

Proof: The relation is certainly reflexive and sym-
metric due to comparing by =. Transitivity can
be proved by direct applying Definition 3. 2

The equivalence allows the decomposition defined
as the classes of equivalence on B̂(S), which split
B̂(S) into disjunctive subsets (the property of the
classes of equivalence). Each class of equivalence

R̃(f̂(x))
df
=

{
f̂i(x) ∈ B̂(S) | f̂(x)=̂f̂i(x)

}
(3)

can be considered as one element written in sev-
eral different forms, but always with equal value.

The composition of more transfer functions at
once requires the definition of the transfer sets to
specify required replacements.

Definition 4. A subset X̂ ⊂ B̂(S) is called a trans-
fer set on S if X̂ satisfies for all f̂i(xi), f̂j(xj) ∈ X̂
that xi = xj implies i = j. The set of all trans-
fer sets for S variables is denoted by Ŝ(S ) i.e.,
X̂ ∈ Ŝ(S ).

In other words, any transfer set contains at most
one transfer function for each variable in S.

Example 3.1 Let S = {x, y, z} be a PLC storage

then X̂ = {f̂(x), f̂(y)} is a transfer set on S, i.e.,

X̂ ∈ Ŝ(S ), but Y = {f̂1(x), f̂2(x)} is never a trans-
fer set, because Y contains two transfer functions
for x, and Ẑ = {f̂(x), f̂(a)} is not transfer sets on

S, Ẑ /∈ Ŝ(S ), because a /∈ S.

Manipulation with transfer set requires testing the
presence of a transfer function for given variable
x ∈ S.

Definition 5. Binary relation ∈̂ on sets S and
B̂(S) is defined for all X̂ ∈ Ŝ(S ) and x ∈ S as
x ∈̂ X̂ if ∃ f̂(x) ∈ X̂, otherwise x /̂∈ X̂.

The composition of transfer sets is based on the
concurrent substitution defined as mapping from
variables in S to terms of Gbexp grammar. The
substitution replaces all occurrences of variables,
which appear in both the term and the domain of
the substitution.

Definition 6. Let X̂ ∈ Ŝ(S ) be a transfer set
and bexp0 ∈ Bexp+ be an expression. Concur-
rent substitution X̂ ; bexp0 is defined as such
operation whose result is logically equivalent to
the expression obtained by these two consecutive
steps:

(1) For all f̂(xi) JbexpiK ∈ X̂, if xi ∈ dom(bexp0)
then all such occurrences of xi are replaced
by unique references to f̂(xi).

(2) For all f̂(xi) JbexpiK ∈ X̂, if bexp0 contains a
reference to f̂(xi) then all such references are
replaced by ”(bexpi)” i.e., the value of f̂(xi)
enclosed inside parentheses.

The main purpose of the definition above is to
exclude cyclic substitutions without detailed rea-
soning about an algorithm for this operation.

Example 3.2 If a concurrent substitution is given
{f̂1(x) Jx ∧ yK , f̂2(y) J¬x ∧ ¬yK} ; (x ∨ y) then
direct application of the first step described in the
definition above yields (f

1
∨ f

2
) where underlinings

emphasize the fact that we have replaced the vari-
ables x and y in (x ∨ y) by some unique references
to the transfer functions and these references need
not be their identifiers necessarily.

The second step yields ((x ∧ y) ∨ (¬x ∧ ¬y)) .

Definition 7. (Weak composition). Weak compo-
sition Ẑ = X̂ ◦ Ŷ of two given transfer sets
X̂, Ŷ ∈ Ŝ(S ) is the transfer set Ẑ ∈ Ŝ(S ) contain-
ing transfer functions ĥ(xi) JbexpiK ∈ Ẑ defined
by:



ĥ(xi) JbexpiK
df
= f̂(xi)

r
Ŷ ; bexpx,i

z
for all

xi ∈̂ X̂, i ∈ I, |I| = |Ẑ| = |X̂|

where bexpx,i belongs to the transfer function
f̂(xi)

q
bexpx,i

y
∈ X̂ for xi variable.

Lemma 3.2. The weak composition is not associa-
tive on B̂(S).

Proof: We prove the lemma by the example. Let
S = {x, y} be storage and X̂ = {f̂(x) Jx ∧ yK},
Ŷ = {f̂(y) JxK}, and Ẑ = {f̂(x) J¬xK} three trans-
fer sets on S then ((X̂ ◦ Ŷ ) ◦ Ẑ) = {f̂(x) J¬xK}.
On the contrary, (X̂ ◦ (Ŷ ◦ Ẑ)) = {f̂(x) J0K}. 2

The non-associative behavior has appeared in the
example due to different variables affected by
transfer sets: y ∈̂ Ŷ and x ∈̂ X̂, x ∈̂ Ẑ. The restric-
tion of B̂(S) to the subset of transfer function for
a given variable x ∈ S offers the simplest solution.

This subset, denoted by B̂(S/x), is defined by

B̂(S/x)
df
=

{
f̂i(xi) ∈ B̂ | xi = x

}
(4)

and it is possible to prove that the weak com-
position is associative on B̂(S/x) and Ĝ(S/x) =
(B̂(S/x)/=̂ , ◦ ) is semigroup but this theoretical
result does not allow the construction of an effec-
tive algorithm.

To create an associative composition, we define
the operator that appends canonical transfer func-
tions (see page 2) for S variables, which transfer
functions are missing in a transfer set.

Definition 8. Let X̂ ∈ Ŝ(S ) be a transfer set on
storage S. The extension of X̂, denoted by X̂ ↑ S,
is the set with cardinality |X̂ ↑ S| = |S| whose
members are f̂(xi) transfer functions defined for
all xi ∈ S by cases:

f̂(xi)
df
=


f̂(xi) if xi ∈̂ X̂

and thus ∃f̂(xi) ∈ X̂

f̂(xi) JxiK if xi /̂∈ X̂

(5)

The set ∅ ↑ S, called canonical transfer set on S,
contains canonical transfer functions for all S vari-
ables. To emphasize its fundamental importance,
let us denoted this set by ÊS .

Definition 9. Let X̂ ∈ Ŝ(S ) be a transfer set on
storage S. The compression of X̂, denoted by X̂ ↓,
is defined by

X̂ ↓ df
=

{
f̂(xi) ∈ X̂ | f̂(xi) /∈ ÊS

}
(6)

The compression expresses the meaning of ↓
operator that serves for packing transfer sets to
reduce allocated memory, but primary purpose of
↓ consists in portability among different S. We
define a transfer set on a subset S0 ⊆ S, which
includes operands of a converted instruction, then
it is possible to extend this transfer set by ↑
operator to any superset of S0.

Example 3.3 Let storage be S = {x, y, z}. If

T̂ ∈ Ŝ(S ) is given as

T̂ =
{

f̂(x) JxK ,

f̂(y) Jx ∨ yK

}
then

T̂ ↑ S =


f̂(x) JxK ,

f̂(y) Jx ∨ yK ,

f̂(z) JzK

 and

T̂ ↓ =
{

f̂(y) Jx ∨ yK
}

The expansion and compression are generally not
inverse operations but they will be if we narrow
Ŝ(S ) to subsets invariable with respect to these
operations.

Ŝ(S )↓ df
=

{
X̂ ∈ Ŝ(S ) | X̂ = X̂ ↓

}
(7)

Ŝ(S )↑ S
df
=

{
X̂ ∈ Ŝ(S ) | X̂ = X̂ ↑ S

}
(8)

Lemma 3.3. ↑ S and ↓ define bijective mapping
between Ŝ(S )↓ and Ŝ(S )↑ S.

The proof follows directly from definition. The
lemma allows extending the equivalence of trans-
fer function introduced in Definition 3 to transfer
sets.

Definition 10. Let X̂, Ŷ ∈ Ŝ(S ) be two transfer
sets on S then X̂ =̂ Ŷ if, for all f̂(xi) ∈ X̂ ↑ S,
there exists f̂(xi) ∈ Ŷ ↑ S such that f̂(xi) =̂ f̂(xi)

Notice that exactly one transfer function always
exists for any xi ∈ S in every transfer set extended
by ”↑ S” operation. This allows to define the main
operation with transfer sets.

Definition 11. (Composition). Let X̂, Ŷ ∈ Ŝ(S )
be two transfer sets on S with extensions X̂ ′ =
(X̂ ↑ S) and Ŷ ′ = (Ŷ ↑ S). Using this notation
and Definition 7 of the weak composition we define
� composition by:

X̂ � Ŷ
df
=

{
f̂(xi) ◦ Ŷ ′ |

f̂(xi) ∈ X̂ ′ where xi ∈ S
}
↓ (9)

Now we present the main theorem of this part for
which validity we have created transfer sets.



Proposition 3.1. The composition � is the asso-
ciative operation on Ŝ(S ).

Proof: The proof is not difficult, but long, so we
only outline it. We must prove that the equation
X̂ � (Ŷ � Ẑ) = (X̂ � Ŷ ) � Ẑ holds for any
X̂, Ŷ , Ẑ ∈ Ŝ(S ). First, the flow of symbols in
terms of languages is considered to prove that
the expressions of the result contains only variable
terms imported from a rightmost transfer set Ẑ.
Then, it is shown that the associativity holds if
no minimization of boolean expressions are pro-
vided, and finally, the influence of minimization is
considered. 2

Example 3.4 We will return to the example pre-
sented in Lemma 3.2 (see page 4) for proving that
weak composition is not associative. We evaluate the
same transfer sets, but we will compose them by �
defined on storage S = {x, y}.

(
X̂ = {f̂(x) Jx ∧ yK}

)
�

(
Ŷ = {f̂(y) JxK }

)
�

(
Ẑ = {f̂(x) J¬xK}

)
Using bijective property of ↑ and ↓ operators we
expand Equation 10 applying ↑ operator to all mem-
bers and ↓ to the result, which yields

({
f̂(x) Jx ∧ yK ,

f̂(y) JyK

}
�

{
f̂(x) JxK ,

f̂(y) JxK

}
�

{
f̂(x) J¬xK ,

f̂(y) JyK

})
↓ (10)

Composing first two leftmost terms in Equation 10
yields

( {
f̂(x) Jx ∧ xK ,

f̂(y) JxK

}
�

{
f̂(x) J¬xK ,

f̂(y) JyK

})
↓

=
{

f̂(x) J¬xK ,

f̂(y) J¬xK

}
↓= Θ̂(¬x)S

and the same result is obtained if we begin with two
rightmost terms

( {
f̂(x) Jx ∧ yK ,

f̂(y) JyK

}
�

{
f̂(x) J¬xK ,

f̂(y) J¬xK

})
↓

=
{

f̂(x) J¬x ∧ ¬xK ,

f̂(y) J¬xK

}
↓ = Θ̂(¬x)S

where Θ̂(¬x)S denotes the transfer set defined
for any bexp ∈ Bexp+ by the following equation

Θ̂(bexp)S df
=

{
f̂(xi) JbexpK | for all xi ∈ S

}
.

The composition is associative since all variables
propagate to the final result as shown in Figure 3

Fig. 2. Diagrams of Composition of Transfer Set
in Example 3.4

that depicts the structure of the composition
provided in the example above. The transfer set
graphs are based on BEDs (Williams 2000).

The bottom nodes represent variables in S and the
upper nodes (the roots) stand for their transfer
functions. Unlike tree graphs of BEDs, transfer
sets are represented by forest graphs and the
operand nodes are shared among all transfer func-
tions in one transfer set. The thicker arrows em-
phasize the canonical transfer functions added
by ↑ operator and their presence explain why �
composition is associative.

Remark 3.1. From the amount of allocated mem-
ory, BED-like structures are also the optimal rep-
resentation of transfer sets because the terms in
expressions are not duplicated by � composition.

To reduce the sizes of the structures, the canonical
transfer functions need not be stored in memory.
We can represent only transfer sets compressed by
↓ operator. In this case, the size of final transfer
set, which expresses the operations of a PLC
program, will be linear in the size of PLC source
code.

Canonical transfer set ÊS (see Definition 4) rep-
resents the identical element of � operation so we
may close this part by the one definition and two
propositions.

Proposition 3.2. (Monoid).
M̂(S) =

(
Ŝ(S )/=̂ , � , ÊS

)
is monoid.

Definition 12. Let X̂1, X̂2 ∈ Ŝ(S ) be two transfer
sets on S with extensions X̂1

′
= X̂1 ↑ S,

X̂2

′
= X̂2 ↑ S. For any xi ∈ S, one trans-



fer function always exists in every extended set:
f̂1(xi)

q
bexp1,i

y
∈ X̂1

′
and f̂2(xi)

q
bexp2,i

y
∈ X̂2

′
.

Using this notation we define the following oper-
ations:

X̂1 � X̂2
df
=

{
f̂(xi)

q
bexp1,i � bexp2,i

y
|

xi ∈ S, i ∈ I, |I| = |S|
}
↓

¬X̂1
df
=

{
f̂(xi)

q
¬bexp1,i

y
|

xi ∈ S, i ∈ I, |I| = |S|
}
↓

where � stands for any boolean binary operation
of Gbexp (see page 2).

Proposition 3.3. Lattice
Â(S)

df
= (Ŝ(S )/=̂,∧,∨, Θ̂(1)S , Θ̂(0)S)

is Boolean algebra of transfer sets.

4. APLCTRAN: ABSTRACT PLC
CONVERSION TO TRANSFER SETS

Here we outline APLCTRANS, the effective and
fast algorithm for representing PLC program op-
erations as one transfer set. A converted binary
PLC program, or its part, must satisfy the follow-
ing conditions:

(1) All operations are expressible by transfer
sets, i.e., the program is rewritable into the
code of abstract transfer set PLC.
Most PLC instructions have transfer set
analogies. The conversion tables were pre-
sented in (Šusta 2002b).

(2) The program is reorganized by such way that
code contains only jumps and calls, which
point to higher addresses, as depicted in Fig-
ure 4.
This prohibits loops and recursive subrou-
tines. Fortunately, PLC programs used them
rarely.

(3) The instructions do not use indirect ad-
dresses in any form, i.e. their operands are
either direct addresses of variables or con-
stants.
Unfortunately, this restriction excludes sig-
nificant part of programs. Some indexes can
be replaced by duplicating corresponding code,
for example if indexes are used for transfer-
ring data into subroutines, but this method
is not applicable to all index operations in
PLCs. Weakening this restriction is the mat-
ter of further research.

After converting operations of a PLC program
into abstract code of transfer sets we may compose
all transfer sets into single transfer set that will
represent operation provided in one PLC scan. Be-
cause � composition of transfer sets is associative
we start from the bottom to the top.

Fig. 3. Outline of APLCTRANS Algorithm

We divide the program into k blocks according to
used labels (see Figure 4) and begin by composing
k block as: X̂k = X̂k,nk

�X̂k,nk−1�. . . X̂k,2�X̂k,1 .
Notice that � composition substitutes from right
to left transfer set, therefore X̂k,1 transfer set
corresponding to the first instruction of k block
is on the right side of X̂k equation.

We store transfer set X̂k into memory and proceed
to previous block. Unlike the last k block, k − 1
block may contain calls and jumps, but they will
all point to already evaluated block k due to the
restriction above. We compose k − 1 block as
X̂k−1 = X̂k−1,nk

� X̂k−1,nk−1 � . . . � X̂k−1,2 �
X̂k−1,1 or if it continues to the last block we
insert X̂k in the front of the equation above, i.e.,
X̂k−1 = X̂k � X̂k−1,nk

. . .

X̂k−1,nk−1 transfer set corresponds to calling k
block as the subroutine. If the call in uncondi-
tional then X̂k−1,nk−1 = X̂k, otherwise we used
modified X̂k. If the condition is given by freg

(usual case) then X̂k−1,nk−1 = Θ̂(freg)S ∧ X̂k.

We apply the similar procedure to X̂k−1,2 (jump).
If the jump is unconditional then X̂k−1,2 = X̂k,
otherwise

X̂k−1,2 = (X̂k ∧ Θ̂(freg)S) ∨
(X̂a ∧ Θ̂(¬freg)S) (11)

where X̂a corresponds to transfer sets after jump,
composed from X̂k−1,3 to the end of the program.
Because we proceed from bottom to top, X̂a is
already evaluated.



After finishing k−1 block we move to the previous
block until we compose the first block, which
represents the transfer set of whole PLC program.

4.1 Example of Conversion

Figure 4 displays the program written under de-
veloping environment RSLogix 5 for PLC-5 family
of PLCs produced by Rockwell Automation.

The middle part of the figure gives the listing of
PLC processor codes. RSLogix 5 allows editing
these instructions in the graphical form of the
ladder diagram depicted at the top of Figure
4. The corresponding transfer sets and APLC
instructions are listed at the bottom. The example
is analogous to Pascal program: 3

var x, y, z, m: boolean;
begin if not x then m:=y;

y:=z;
end;

The simple program does not utilize evaluation
stack. We will suppose that Σ = {x, y}, Ω = {z},
and V = {m}, thus PLC storage will be S = Σ ∪
V ∪Ω = {x, y, z, m, freg}. The composition of the
last block as the following:

X̂2 = X̂2,3 � X̂2,2 � X̂2,1

= { f̂(freg) J1K }� { f̂(z) JfregK }�

{ f̂(freg) Jfreg ∧ yK }
= { f̂(freg) J1K , f̂(z) Jfreg ∧ yK }

After the last block, the previous one is computed
from the end to JMP instruction

X̂1b = X̂1,9 � X̂1,8 � X̂1,7 � X̂1,6 � X̂1,5 � X̂1,4

= { f̂(freg) J1K }� { f̂(freg) J1K }�

{ f̂(m) JfregK }� { f̂(freg) Jfreg ∧ yK }�

{ f̂(freg) J1K }� { f̂(freg) J1K }
= { f̂(freg) J1K , f̂(m) JyK }

Block 1 continues to block 2 and we must compose
them together:

X̂1B = X̂2 � X̂1b

= { f̂(freg) J1K , f̂(z) Jfreg ∧ yK }�

{ f̂(freg) J1K , f̂(m) Jfreg ∧ yK }
= { f̂(freg) J1K , f̂(z) JyK , f̂(m) JyK }

3 The presented example is very bad PLC program that
was created intentionally only for demonstrating condi-

tional JMP composition — the most complex case. The
example could be programmed by much better ways, but
such programs have appeared too unreadable for any man-

ual composition.

Ladder diagram

Listing created by PLC 5
development environment RSLogix 5

PROJECT "EXAMPLE"
LADDER 2
% Rung: 0 %
SOR XIC I:001/1 JMP 2 EOR
% Rung: 1 %
SOR XIC I:001/2 OTE O:001/1 EOR
% Rung: 2 %
SOR LBL 2 XIC I:001/2 OTE O:001/2 EOR

ADDRESS..SYMBOL
O:001/2 Z
O:001/1 M
I:001/2 Y
I:001/1 X

PLC Transfer set
SOR X̂1,1 = { f̂(freg) J1K }
XIC X X̂1,2 = { f̂(freg) Jfreg ∧ xK }
JMP 2 X̂1,3 = Equation 11
EOR X̂1,4 = { f̂(freg) J1K }

SOR X̂1,5 = { f̂(freg) J1K }
XIC Y X̂1,6 = { f̂(freg) Jfreg ∧ yK }
OTE M X̂1,7 = { f̂(m) JfregK }
EOR X̂1,8 = { f̂(freg) J1K }
SOR X̂1,9 = { f̂(freg) J1K }
LBL 2
XIC Y X̂2,1 = { f̂(freg) Jfreg ∧ yK }
OTE Z X̂2,2 = { ẑ JfregK }
EOR X̂2,3 = { f̂(freg) J1K }

Fig. 4. Example of Simple PLC Program

After obtaining this result, APLCTRANS evalu-
ates JMP according to Equation 11 as:

X̂1,3 =
((

X̂2 ∧ Θ̂(freg)S
)
∨

(
X̂1B ∧ Θ̂(¬freg)S

))
=

({
f̂reg J1K ,

f̂(z) Jfreg ∧ yK

}
∧ Θ̂(freg)S

)
∨

f̂reg J1K ,

f̂(z) JyK ,

f̂(m) JyK

 ∧ Θ̂(¬freg)S





=



f̂reg JfregK ,

f̂(x) Jx ∧ fregK ,

f̂(y) Jy ∧ fregK ,

f̂(z) Jy ∧ fregK ,

f̂(m) Jm ∧ x ∧ fregK


∨



f̂reg J¬fregK ,

f̂(x) J0K ,

f̂(y) Jy ∧ ¬fregK ,

f̂(z) Jy ∧ ¬fregK ,

f̂(m) Jy ∧ ¬fregK



=



f̂reg Jfreg ∨ ¬fregK ,

f̂(x) J(x ∧ freg) ∨ 0K ,

f̂(y) J(y ∧ freg) ∨ (y ∧ ¬freg)K ,

f̂(z) J(y ∧ freg) ∨ (y ∧ ¬freg)K ,

f̂(m) J(m ∧ x ∧ freg) ∨ (y ∧ ¬freg)K


=


f̂reg J1K ,

f̂(x) Jx ∧ fregK ,

f̂(z) JyK ,

f̂(m) J(m ∧ x ∧ freg) ∨ (y ∧ ¬freg)K


Notice deleting canonical transfer function f̂(y) JyK
in the result by the compression (see Definition 9
on page 4).

Now APLCTRANS can compose the whole first
block 1:

X̂1 = X̂1,3 � X̂1,2 � X̂1,1

= X̂1,3 � { f̂(freg) Jfreg ∧ xK }� { f̂(freg) J1K }
= X̂1,3 � { f̂(freg) JxK }

=


f̂reg J1K ,

f̂(x) Jx ∧ fregK ,

f̂(z) JyK ,

f̂(m) J(m ∧ x ∧ freg) ∨ (y ∧ ¬freg)K


� { f̂(freg) JxK }

=


f̂reg J1K ,

f̂(z) JyK ,

f̂(m) J(m ∧ x) ∨ (y ∧ ¬x)K


APLCTRANS terminates and transfer set X̂1

contains transfer functions describing the opera-
tions of whole APLC program.

4.2 Experimental Results

To analyze the behavior of APLCTRANS, sur-
veyed in Section 4, a test version of algorithm
was created. It represents transfer sets as byte
arrays and the composition was provided in the
form close to symbolic formulas. BED-like struc-
tures, depicted in Figure 3, were not used because
of several implementation problems but they are
preparing for new version of APLCTRANS.

APLCTRANS algorithm implementation gave for
the example in Subsection 4.1 the following result
written in the notation suitable for text files:

Composed in 0.18 seconds.
Result={ @f[(1.(1.x))+(1.!(1.x))],

m[(m.(1.x))+(((1.y)).!(1.x))],
z[((((1.x).y)).(1.x))
+(((1.y)).!(1.x))] }

Minimized in 0.00 seconds.
MinResult={ @f[1], m[x.m+!x.y], z[y] }

where symbol ’@f’ stands for freg . The prefix
’@’ is reserved code for APLC machine internal
variables to distinguish them from all names used
in programs.

The test were provided with 19 fragments ex-
tracted from real PLC programs, they were writ-
ten by different programmers. Unfortunately, we
could compose only fragments, because the test
version has limit |S| < 256. Thus the sample is not
so weighty as we would wish, and no statistically
significant relation can be deduced.

Even if a highly non-optimal representation of
transfer sets in memory was used, only one pro-
gram (with 1990 instructions) produces the expo-
nential growth of data size that has catapulted its
conversion time to 954 s. The other programs have
conversion time below 51 s (the longest fragment
with 8479 instructions). The smallest sample has
438 instructions and shortest conversion time (2.2
s).

The tests with APLCTRANS also revealed that
logical minimizations of the final results are many
times slower than conversion itself and a partial
optimization of formula must be provided during
the composition.

5. CONCLUSION

In this paper, we presented transfer sets defined
on boolean variables. Generally, the principles of
concurrent substitution and the composition are
preserved for many binary and unary operations,
so the transfer set may be extended for expressing
them. In this case, the modification of transfers
set for composing calls and jumps must be gen-
erally provided by conditional assignments, like
”x :=condition ? true-value : false-value” known
from C language.

The utilization of APLCTRANS for expressing
timers was presented in and the result is convert-
ible into a timed automaton.

In sum, our preliminary results are encouraging.
We hope that further research will enable the
potential advantages of APLCTRANS to apply
to a much wider range of PLC programs.
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