
ADAPTATION OF CONTROL PROGRAMS TO
ASYNCHRONOUS I/O UPDATES

Richard Šusta ∗

∗ Department of Control Engineering,
Faculty of Electrical Engineering, Prague

http://dce.felk.cvut.cz/susta/

Abstract: The paper discusses the problems with adaptation of industrial control
programs from synchronous to asynchronous I/O update when peripherals are
redeveloped with the aid of control area networks (CANs). CANs decrease
necessary wires between controllers and technology, but they have lower data
update rates in comparison with I/O buses. To accelerate and optimize I/O polling,
I/O data can be updated asynchronously to evaluations of control algorithms.
If a control program was written with the assumption of synchronous I/O updates,
its adaptation to asynchronous I/O updates requires its partial modifications to
exclude possibility of dataraces. The simplest and robust way represents simulating
of synchronous I/O updates by copying all input values into an array before each
evaluation of the program, but such spare buffering generally increases responses
to events. Therefore, the paper presents conditions for running the program (or
its parts) without spare buffering of I/O data. Copyright c© IFAC 2004

Keywords: PLC, scan dataraces, static verification, transfer sets, APLCTRANS

1. INTRODUCTION

Controlling or supervising a manufacture system
usually needs cyclic transfers of great amounts
of data between I/O hardware and computers.
For that reason, industrial programs frequently
operate directly in a cyclic manner, which requires
that the programs have limited execution times
and always terminate normally under any circum-
stances, otherwise a fatal error occurs. We will
call such cyclic manner programs as I/O handler
programs, in short IOH-programs, according to
event handlers utilized in operating systems that
have very similar properties.

The execution of an IOH-program can be sched-
uled by many ways, most frequently as:

1 This research is partially supported by the Rockwell

Automation Services, Koĺın, Czech Republic

continuous task — its new execution begins
after finishing a previous one;

periodic task — the program is started at reg-
ular time intervals; or

event-driven task — it just waits for events to
occur.

Event-driven tasks usually deal with extraordi-
nary situations or with fast I/O data. The im-
plementations of numeric control algorithm de-
pending on sampling period need periodic tasks
and continuous tasks are suitable for the rest of
operations.

IOH-programs rarely access I/O hardware di-
rectly. Such manipulation are usually too slow,
require special processing and permissions, so they
are also either not recommended or reserved only
for special situations, for instance the sampling of
analog data for a discrete control algorithm.

Output image

Input image

IOH-ProgramWaiting for
New Execution

Input
Peripherals

Output
Peripherals

S

W

Fig. 1. IOH-Program in synchr. environment

Local
I/O Modules

Distributed
I/O Modules

Technologic Process

Fig. 2. Local and distributed I/O modules

Thus, IOH-programs ordinary run embedded in
some proper hardware or software environment,
as depicted in Figure 1. Such environments are
also offered by robust PLCs (programmable logi-
cal controllers), which firmware synchronizes the
evaluations of IOH-programs with I/O data by
repeating three consequent steps:

Input scan: Hardware inputs are polled, or sam-
pled respectively, and their values are stored
into inner memory Σ, called Input image;

Program scan: user’s IOH-program is executed
once. It calculates new outputs and writes them
into inner memory Ω, called Output image; and

Output scan: after termination of the program,
the values in output image Ω are copied into
corresponding peripherals.

These steps correspond to a regulator with cyclic
sampling of I/O data. On classical computer, if an
IOH-program is scheduled as a continuous task
then it can be programmed by endless loop, for
instance in Pascal:

repeat
Read Inputs(Σ);
Execute Program(Σ,Ω);
Write Outputs(Ω);

until false;

IOH-programs scheduled as periodic and event-
driven tasks can be programmed as event handlers
of timers or I/O peripherals.

However, the synchronous updating of I/O has
many advantages, its major drawback is polling
I/O data in one-stroke, which increases I/O scan
times inadequately, especially, when I/O periph-
erals are connected by control area networks
(CANs), as depicted in Figure 2.

Distributed I/O modules offer many indisputable
advantages, of which we mention only significant
reduction of the length of all necessary wires, but
there are also some drawbacks. In the contrast
to local I/O buses, which speed is practically
determined only by their electrical parameters,
the transfer rates of networks are limited by
much more factors. Polling all I/O data in one
stoke, as it is perfomed by synchronous updating,
concentrates all data transfers into short intervals
and easily causes overloading of networks.

An asynchronous updating of inputs and outputs
allows much better optimization of network traf-
fic. In this case, input Σ and output Ω images are
usually converted into sets of tags.

Tags correspond to typed variables of classical
programming languages, but with the addition of
possible bounding their values to external sources,
either local or remote, so their values can come
from input modules (input tags) or from other
computers, (consumed tags). 2

If an input source is connected through local
I/O bus, then its corresponding destination tag
can be updated as fast as the communication
devices can process the information, otherwise its
update time is specified by an entered requested
packet interval (RPI) which defines the required
maximum amount of time between the updates,
if the update is periodic, or a maximal delay
between a change and sending new value, if its
updating is bound to changes of a data source.

The opposite roles are played by output tags,
which values are written into output modules, or
produced tags, which are send to other connected
computers.

One output or produced tag can be transmitted
into more destinations, but any input or consumed
tag is always updated at most from one source.
Thus the value of any tag

(1) is always transmitted only unidirectionally,
i.e. from its source to all possible destina-
tions, if any; and

(2) can be also updated:
• in shorter time than requested RPI and
• during the execution of some instruc-

tions.

2 Typical representatives of tag-based systems are PLCs
of ControlLogix family manufactured by Allen Bradley,

Rockwell Automation.

An IOH-program, which is scheduled as a contin-
uous task with asynchronous I/O updating, can
be programmed on a classical computer with the
aid of two or more threads:
The main thread: Other threads:
repeat repeat
IOH Program(Σ,Ω); IOManager(Σ,Ω);
until false; until Terminated;

where Terminated stands for the request to termi-
nate the IOManager thread. Periodic and event-
driven tasks can be again programmed as event
handlers of timers or I/O peripherals.

The I/O update manager, which performs asyn-
chronous updating, runs as a parallel program,
which arises a possibility of dataraces. In parallel
programming, dataraces are usually excluded by
synchronization tools, as locks or mutex objects
for protecting critical sections, but this method
does not generally assure regular updates of all
I/O data.

For that reason, utilizing synchronization tools
need not be allowed necessarily in all tag-based
environments. 3 But excluding mutual synchro-
nization between I/O update manager and a IOH-
program also means excluding many methods
known from parallel programs. Therefore we must
search another solution.

2. MODEL OF UPDATING ENVIRONMENT

In this paper, we aim to adaptation of a given
IOH-program, which was written for an environ-
ment with synchronous I/O updating, to a new
environment with asynchronous I/O updating.

First, we create model of the both environments
to analyze their properties. We will distinguish
between them by utilizing TAG-IOH for an en-
vironment with asynchronous I/O updating into
tags and S-IOH for a synchronous environment
depicted in Figure 3.

To isolate S-IOH and TAG-IOH differences from
other difficult questions of parallel programming,
we will assume:

(1) an IOH-program will be scheduled as a con-
tinuous task,

(2) its execution time is always limited by tep
constant, and

3 For example, the instruction set of tag based PLC family

ControlLogix allows only few instructions for predefined
interlocked operations, i.e., only during their execution,

it is granted that their operands will not be updated.

These instructions do not involve other operations, with
the exception of adding possible random time delays to

them, so they do not allow synchronizing between program

and I/O update manager.

Te ch n o l o g i c P ro ce ss

Tags of
Input

Modules

S

IOH-Program

Tags of
Output
Modules

W

Outputs
Inputs

Tags

I/O Update Manager

Consumed

Produced

Tags

Private

Shared
Data

Local bus
I/O Modules

Remote I/O
Modules

Remote
TAG-IOHs

TAG-IOH EnvironmentTAG-IOH Environment

Fig. 3. Σ and Ω in TAG-IOH environment

(3) the members of Σ and Ω sets, which are ac-
cessed by the program, do not share mutually
their memory locations, i.e., each member is
mapped to its own storage.

Sets Σ and Ω are specified for S-IOH environment
by Figure 1. For TAG-IOH environment, we create
Σ as the set of all input and consumed tags, as
depicted in Figure 3.

Similarly, Ω will contain all output tags and
all produced tags. Finally, all tags or variables
accessed by the program are included into V set
of variables.

The third assumption in the list above assures
that Σ, V, and Ω are three disjoint sets, which we
utilize in the following definition.

Definition 1. (IOH-program). Let be Σ, Ω, and V
three disjoint sets of variables. We denote by P
any program that satisfies the following:

• it always terminates and its execution time
is less than a given constant T ,

• it utilizes Σ as its inputs, Ω as its outputs, V
as its internal variables, and

• it accesses nothing outside storage S = V ∪
Σ ∪ Ω.

We denote by P 〈Σ, V,Ω, T 〉 the set of all such
IOH-programs, i.e., P ∈ P 〈Σ, V,Ω, T 〉.

Our the model of S-IOH environment consists of
one thread with endless loop, as shown on Figure
4. Maximum execute times of the input updates,
the program runs, and output updates are given
by constants tei, tep, and teo.

Notice that the program has also write access into
Σ input image, when it is embedded in S-IOH
environment. It is sometimes suitable for quick

eioht

eit

ept

eot

xsrc
1 x1

xsrc
2 x2

xsrc
m xm

ydst
1 y1

ydst
2 y2

ydst
n yn

IOH-Program

Fig. 4. Model of S-IOH environment

ept

xt 1

xsrc
1 x1

xt 2

xsrc
2 x2

xt m

xsrc
m xm

yt 1

ydst
1 y1

yt 2

ydst
2 y2

yt n

ydst
n yn

I
O
H
-
P
r
o
g
r
a
m

Fig. 5. Model of TAG-IOH environment

readdressing of inputs without many changes in
the program, if required.

TAG-IOH model requires specifying RPI times in
addition to storage S. In the following paragraphs,
we denote a common index set by I, i.e.,

I
df
= {1, 2, . . . |I|} (1)

Let all xi ∈ Σ, i ∈ I, |Σ| = |I|, be periodi-
cally updated from some srcxi

external sources in
randoms intervals, whose lengths t of time have
unknown probability distributions, so P program
may make only one assumption that t satisfies
txi

≥ t > 0 where txi
stands for some given RPI

time of xi tag.

Similarly, we assume that the values of all yj ∈ Ω,
j ∈ I, |I| = |Ω| are periodically copied into dstyj

external destinations in some random intervals t
satisfying tyj ≥ t > 0, where tyi are given RPI
times.

In this case, P program is executed on a TAG-IOH
by the way that corresponds to m+n+1 threads
(see Figure 5) where m = |Σ| and n = |Ω|. The

thread of user’s IOH program performs endless
loop with maximum length of program scan time
equals to tep.

Remark 2. We utilized so m + n thread only for
simplification of the model. In reality, too many
active threads decrease performance of operating
systems. Therefore, the practical solution of I/O
update manager could, for example, consists of
one thread program that dispatches events, as
incoming network packets, to sub-handlers. But
properties of this solution will be similar to our
thread model.

To optimize I/O polling, TAG-IOH environment
can allow disabling automatic output updates,
which is emphasized by the dashed rectangle in
Figure 2. In such case, the program must request
the updates for each group of output tags after
finishing their evaluations.

In contrast, all Σ input tags are always updated
independently to the execution of IOH program
and, therefore, Σ are read only data in TAG-IOH
because the program cannot reliably store any
temporary values in them.

We may consider all possible write accesses into
Σ tags as program errors, which we employ in the
adaptation.

3. I/O LATENCIES

There are two important differences between S-
IOH and TAG-IOH environments caused by dis-
tinct I/O updates - I/O latencies and dataraces.
In this section, we consider the latencies.

Definition 3. Let x ∈ Σ be an input. Suppose the
existence of two functions that return last times
before a given t time, when

• tch(x, t) - data source of x has changed its
value, and

• tup(x, t) - stored value of x was updated.

Input latency of x in time t is defined by

til(x, t)
df
= t− tch(x, tup(x, t)) (2)

Definition 4. Let x, y ∈ Σ be any two inputs.
their mutual input latency in a given time t by
|til(x, t)− til(y, t)|.

In other words, an input latency specifies a time
delay at time t between actual value of an input
and its value read from Σ in time t, as depicted
in Figure 6. Mutual input latencies specify time
delay between samples stored in Σ.

ttup()x,ttch(),ttup()x,t

tch(x),t

til()x,t

x source

x tag

IOH-program
reads data

Hardware input
is changed

Fig. 6. Input latency

Input latencies
One Input Mutual

S-IOH ≤ tei+tep ≤ tei
TAG-IOH(−B) < RPI ≤ RPI+ tep
TAG-IOH(+B) ≤ RPI+tep < RPI

(-B) normal, (+B) with I/O bufering

Table 1. Input latencies of models

Input latencies are summarized in Table 1. For S-
IOH model, maximal input latency equals to tei +
tep, i.e., the duration of input sampling plus the
execution time of IOH-program. Its mutual input
latency depends only on tei because all inputs are
read during one input scan.

When discussing TAG-IOM model we need to
distinguish if IOH-program emulates synchronous
environment, which is a natural solution for pre-
venting problems with asynchronous sampling —
the input values are read into an array before
running IOH-program and the array values are
utilized instead of actual input tags. Similarly,
outputs are written in another array and copied
to output tags at the end of the execution. We will
call this approach as I/O buffering .

Input latencies of TAG-IOH model without an
I/O buffering are determined only by actual RPI
times of xi inputs in the question (txi in the
model). Mutual I/O latencies are given as the
maximum of RPI times of inputs involved, to
which we must add the execution time of an IOH-
program, at most tep, if the first variable is read
at beginning and the second before the end of
the program. The similar conclusion can also be
derived for Ω outputs and their latencies.

If an I/O buffering is employed in TAG-IOH
model then input latencies are increased by the
execution time because values stored in a buffer
are not updated. On the other hand, mutual input
latencies are frozen to the moment of buffering
and do not depend on the execution time.

However, mutual latencies are non-zero, neither
for S-IOH nor for TAG-IOH. They are not a
characteristic behavior of a TAG-IOH — it may
only emphasize them.

x x x

x

y y y

y y

1

2

3

m

m

m

m

e

e

Fig. 7. Edge detection

4. DATARACES IN TAG-IOH

Dataraces, known from parallel programs, are
discussed in many papers, for instance in Choi
et al. (2002), and usually defined as two memory
accesses which satisfy four datarace conditions:

(1) the two accesses are to the same memory
locations and at least one of the accesses is a
write operation;

(2) the two accesses are executed by different
threads;

(3) the two accesses are not guarded by a com-
mon synchronization object (lock); and

(4) there is no execution ordering enforced be-
tween two accesses, for example by thread
start or join operations.

All inputs Σ and outputs Ω of TAG-IOH satisfy
datarace conditions. We pick up only such accesses
to them, which could result in an erroneous behav-
ior on TAG-IOH, but not on S-IOH, which means
inputs Σ. They only are changed by updating
processes of TAG-IOH model, and at any moment,
unlike S-IOH. Thus, some codes will not work
correctly with TAG-IOHs.

Possible dataraces in outputs Ω export problems
to the external units, about which we made no as-
sumption. Therefore, we will not study Ω outputs
here.

We demonstrate this fact on two examples of well
known rising edge detection in inputs x and y,
see Figure 7. The result xe (rung 1) of the edge
detection will be 1 for one program scan, in which
x input has just changed to 1, otherwise xe = 0.
The result ye behaves similarly.

The ladder diagram can be converted into the
following codes:

xs := x xe := xs ∧ ¬xm; xm := xs;
ye := y ∧ ¬ym; ym := y;

The first line copies x variable into temporary xs,
stored into an evaluation stack, then xe rising edge
is evaluated with the aid of xs. The second line
describes mathematically identical operation, but
performed without temporary storage for y input.

To analyze the program, we define its all traces.

Definition 5. Let P ∈ P 〈Σ, V,Ω, T 〉 be a IOH-
program. We define set of P traces as a subset
trace(P) ⊂ P 〈Σ, V,Ω, T 〉 that includes all possi-
ble programs, which code consists of instructions
executed during one execution of P program. Set
of traces trace(P) is deterministic if it holds for
any Ptr ∈ trace(P) that {Ptr} = trace(Ptr).

Any deterministic set of traces contains only IOH-
programs with single unchangeable streams of in-
structions, but it does not still assure its usability,
because some special IOH-programs can have sets
of traces with huge cardinalities. On the other
hand, these programs will be probably excluded
from analyses for their complexity in any case.

To express possible change of the values of input
tags x and y, we mark the accesses to them
by superscripts to express the information about
instant of time, in which the value of an input tag
was sampled.

Definition 6. Given x ∈ Σ input tag, P ∈
P 〈Σ, V,Ω, T 〉 program and that have determinis-
tic set of traces. If x value is read in some discrete
time t in a Ptr ∈ trace(P), then we denote such
read instant of x tag by x〈t〉.

The set of traces of the rising edge detection
contains one IOH-program, the original program
itself. Utilizing integer times, we mark the access
to the value of x tag by x〈1〉 and two accesses to
the value of y tag on the rung 2 and 3 by y〈2〉 and
y〈3〉. We obtain the program:

xs := x〈1〉 xe := xs ∧ ¬xm; xm := xs;
ye := y〈2〉 ∧ ¬ym; ym := y〈3〉;

The tag xe still depends only on single time
instant of xs, but ye depends on y〈2〉 and ym where
is stored y〈3〉. If y〈2〉 = 0 and y〈3〉 = 1 in some
program execution accidentally due to updating
the value of y tag, then the rising edge of y will
not be detected.

Lemma 7. Let P ∈ P 〈Σ, V,Ω, T 〉 be arbitrary
IOH-program. Given x ∈ Σ input. If it holds for
all Ptr ∈ trace(P) that Ptr code contains only one
instant of x, that P has no dataraces in x.

If x variable is read only once then no datarace
can exist. Lemma gives simple method, but their
application is limited to trivial cases. For example,
it does not exclude the presence of dataraces
in P ∈ P 〈{x}, {i1, i2}, ∅, T 〉 program, which is
evidently datarace free: i1 := x〈1〉; i2 := x〈2〉;

Proposition 8. Let P ∈ P 〈Σ, V,Ω, T 〉 be arbitrary
IOH-program. Given x ∈ Σ input. If it holds for
all Ptr ∈ trace(P) that all values of all V ∪ Σ
variables were derived only from one instant of x,
that P has no dataraces in x.

The structure of the proof is straightforward. If
each value variable y ∈ V ∪ Σ depends only on
one instant, a possible change of x value will have
no influence.

The proposition does not contains ’iff’ clause
because it can announce false alarms, for example,
in y = 1 ∧ x ∧ x, but it concerns mainly to
cases when one or more instants of variable are
redundant and have no influence on a result,
which are rare situations.

Proposition 8 offers possibility applying dataflow
analysis methods that were developed for opti-
mizing compilers. Many publications studies this
problem, for instance Sathyanathan (2001) or
Zheng (2000).

In the following subsection, we present a method
applicable to some subset of IOH-programs. Even
if it does not process sufficiently special operation,
as pointer of arrays, it has simple implementation.
We use it as an overview of the problem.

4.1 Testing dataraces

We will analyze the dependencies of variables
on input Σ. First we define sets for storing this
information.

Definition 9. (ψ-pair). Let S be arbitrary non-
empty set of variables. We define ψ-pair on S
as ψ 〈x,X〉, where x ∈ S and X ⊆ S, and two
operators:

dom(ψ 〈x,X〉) df
= X

co(ψ 〈x,X〉) df
= x

where dom(ψ 〈x,X〉) and co(ψ 〈x,X〉) stand for
domain and codomain of ψ 〈x,X〉 . We denote a
set of all ψ-pairs on given S by (S)ψ∗.

Definition 10. Any subset X̃ ⊆ (S)ψ∗ satisfying
that co(ψ 〈x, V 〉) = co(ψ 〈x, V 〉) implies i = j for
all ψ 〈xi, V 〉 , ψ 〈xj , V 〉 ∈ X̃, is called a Ψ-set on
S . We denote the set of Ψ-sets for S variables by
Ψ(S), i.e., X̃ ∈ Ψ(S).

In any Ψ-set X̃ ∈ Ψ(S), one ψ-pair exists at most
for each variable xi ∈ S with the codomain equal
to xi. We also define codomains of Ψ-sets as the
sets of codomains of all its ψ-pairs.

Definition 11. Given a Ψ-set X̃ ∈ Ψ(S). We
define its codomain as:

co(X̃)
df
=

{
xi | ψ 〈xi, V 〉 ∈ X̃

}
(3)

Definition 12. A composition Z̃ = X̃ � Ỹ of two
given X̃, Ỹ ∈ Ψ(S) is Z̃ ∈ Ψ(S), |Z̃| = |X̃|,
containing ψ-pairs ψ 〈zi, Zi〉 ∈ Z̃. These ψ-pairs
are constructed by the following algorithm:

First step:

for all ψ 〈xi, Xi〉 ∈ X̃, i ∈ I, |I| = |X̃| = |Z̃|
do begin:
ψ 〈zi, Zi〉 := ψ 〈xi, Xi〉
for all ψ 〈yj , Yj〉 ∈ Ỹ do begin:
if yj ∈ Xi then Zi := (Zi − {yj}) ∪ Yj

end
end

Second step:

for all ψ 〈yi, Yi〉 ∈ Ỹ , i ∈ I, |I| = |Ỹ |
do begin:

if yi /∈ co(Z̃) then Z̃ := Z̃ ∪ {ψ 〈yi, Yi〉}

In words, the first step tests if the codomain of
a ψ-pair from Ỹ is in domain of any ψ-pair from
X̃. If it is satisfied, ψ-pair from Ỹ replaces by its
domain the variable in the domain of ψ-pair in X̃.

The second step adds to the result all ψ-pair in Ỹ ,
which codomains are not in the codomain of the
result.

Proposition 13. The composition � is associative
on Ψ(S).

Proof: Ψ-sets are derived by simplifying trans-
fer set theory (see Šusta (2003)). If we assume
the existence of some abstract � binary opera-
tion that satisfies idempotency (x � x = x) and
commutativity (x � y = y � x) laws for any
two arbitrary tags x, y, then we can create map-
ping of ψ-pairs into transfer sets. For instance,
a ψ-pair 〈x, {x, y, z}〉 is mapped into x := x �
y � z assignment, which has direct conversion to
{x̂Jx� y � zK} transfer set. The associativity was
already proved for transfer sets.

The analogy between ψ-pair and expression allows
utilizing them for testing variable dependency. We
create instantized input set Σ〈t〉 of all instants
of input tags in a given program trace Ptr ∈
trace(P).

We describe dependencies in the instructions of
some trace by psi-pairs, which we consecutively
compose by � operation to one Ψ-set D. Finally,
we test dataraces by the following algorithm that

composes mutually ψ-pairs to find out all depen-
dencies.

Algorithm 1. Testing dataraces:

Input: Given a non-empty instantized storage
S〈t〉 = Σ〈t〉 ∪ V ∪ Ω and Ψ set D̃ ∈ Ψ(S〈t〉).

Initialization: Loop index i = 0.
Step 1: Utilizing 〈xi, Xi〉 ∈ D̃ we perform for all
j ∈ I, |I| = |D|, j 6= i: ”If 〈xj , Xj〉 ∈ D̃ satisfies
that xj ∈ Xi, then Xi := (Xi − {xj}) ∪Xj .”

Step 2: If i < |D| then we increment i and repeat
Step 1, otherwise we proceed to the final test.

Final test: If any dom(〈xi, Xi〉) ∈ D̃ contains
two different instants of one input, then x has
possible datarace.

The algorithm requires the maximum amount of
memory |V ∪ Ω| ∗ |S〈t〉|, contains finite loop and
always terminates at most after |D| ∗ (|D| − 1)
steps. 4 Each loop cycle adds dependencies of
one variable into all domains of such ψ-pairs, in
which domains it is presents, therefore, if any tag
depends on more instants of some input, then they
must appear at least in one domain set of the
result.

5. CONCLUSION — ADAPTATION OF
IOH-PROGRAM

The adaptation of a program can be suitable
mostly in two cases to short the expensive com-
missioning phase:

• Peripherals have been redeveloped with the
aid of control area networks (CANs) and we
want to adapt major parts of our old reliable
program.

• New program was written by technologists
accustomed to programming in synchronous
I/O update environment, so it must adapted
to asynchronous environment.

First, we utilize the results presented in Table 1
for TAG-IOH and decide if we need to minimize
mutual latencies for some signals in subset Σ∪Ω.
For such I/O groups, we add their I/O buffering
into the program. It is ordinary required for all
numeric control algorithms or other parts which
functionality depend on a proper sampling.

Finally, we consider dataraces. The I/O buffering
exclude them. If we have buffered all Σ inputs,
then the program is surely datarace free. Other-
wise, if I/O buffering concerns only some subset of
Σ, we test all unbuffered inputs by either Propo-
sition 8 or Lemma 7.

4 The reduction of steps to half is possible, but it leads to

less comprehensible form.

No. Size Inputs Possible dataraces

[kB] Lemma 7 Prop. 8

1 3.2 5 5 5

2 3.5 4 4 3

3 6.7 4 4 3

4 13.4 94 63 54

5 28.2 132 102 88

6 143.8 419 25 2

Table 2. Tested PLC 5 Programs

We can try simple Algorithm 1 in Subsection 4.1.
If it fails to give results for a x ∈ Σ, we apply
I/O buffering to x, or we try any more exact and
complex dataflow analysis.

5.1 Experimental Results

Algorithm 1 was tested on 6 program fragments
extracted from different PLC programs that were
written by several programmers for various in-
dustrial technologies. All fragments have only one
possible trace (see Definition 5), which is common
feature of many PLC programs.

Unfortunately, we have tested only PLC 5 pro-
grams because the import modules for another
PLCs have not been finished yet, and we could
analyze only fragments, since every PLC program
contains some PLC dependent parts, for example
special initializations of I/O modules.

The results are presented in Table 2. They are
listed in size order measured in bytes occupied
by programs in PLC internal memory. The table
shows the number of their inputs, which must
be tested, and possible input dataraces detected
applying Lemma 7 and Proposition 8.

Lemma 7 does not require any additional equip-
ment — we directly utilized the cross reference
list in RSLogix 5 programming environment for
PLC 5 processors. Testing dataraces according
Proposition 8 was performed by an external pro-
gram that processed PLC 5 programs exported
into text files.

Proposition 8 gives more exact results. The
biggest program (number 6) was nearly datarace-
free due to copying many inputs into auxiliary
variables to allow fast readdressing of I/O signals.

Much smaller programs 4 and 5 have many pos-
sible dataraces because they prioritized reducing
auxiliary variables and preferred repeating inputs
conditions to simplify troubleshooting of technolo-
gies.

Therefore, no statistically significant relation can
be deduced. The number of inputs suspected for
possible dataraces in a PLC program too de-
pends on controlled technologies, employed pro-
gramming styles, and additional requirements. On
the other hand, the application of detailed tests

according to Proposition 8 could save time in
special cases.

6. RELATED WORKS

Dataraces are intensively studied and many pa-
pers deal with them, for example Choi et al.
(2002); Ramanujam and Mathew (1994) cited
in the previous sections. Unfortunately, all ap-
proaches that we have found assumed the knowl-
edge of the source codes of all analyzed treads.
No available publication studied a case similar
to TAG-IOH, when some threads have random
behavior and no synchronizations are available.

The optimization of compilers is the main domain
of dataflow analysis used for tracking variable de-
pendences. We already mentioned Sathyanathan
(2001) and Zheng (2000), in which are long lists
of publication dealing with this topic. The book
Nielson et al. (1999) presents good overview of
many methods.

Our simple method for testing variable depen-
dences, presented in Subsection 4.1, utilizes the
results of the transfer sets published in Šusta
(2004) or Šusta (2003).

REFERENCES

J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and
precise datarace detection for multithreaded
object-oriented prog. In ACM SIGPLAN 2002
Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany,
June 2002.

Flemming Nielson, Hanne Riis Nielson, and Chris
Hankin. Principles of Program Analysis.
Springer-Verlag, 1999. ISBN 3–540–65410–0.

J. Ramanujam and A. Mathew. Analysis of event
synchronization in parallel programs. In Lan-
guages and Compilers for Parallel Computing,
pages 300–315, 1994.

Patrick W. Sathyanathan. Interprocedural
Dataflow Analysis - Alias Analysis. PhD thesis,
Stanford University, Computer Systems Labo-
ratory, June 2001.

Richard Šusta. Verification of PLC Programs.
PhD thesis, CTU-FEE Prague, May 2003. avail.
at http://dce.felk.cvut.cz/susta/.

Richard Šusta. Low cost simulation of PLC
programs. In 7th IFAC Symposium on Cost
Oriented Automation COA 2004, Gatineau
(Québec) Canada, pages 219–224. Université du
Québec en Outaouais, 2004.

B. Zheng. Integrating Scalar Analyses and Op-
timizations in a Parallelizing and Optimizing.
PhD thesis, Dept. of Computer Science and
Engineering, University of Minnesota, 2000.

